929 resultados para Immersion tin
Resumo:
Tin sulphide films were grown at different substrate temperatures by a thermal co-evaporation technique. The crystallinity of the films was evaluated from X-ray diffraction studies. Single-phase SnS films showed a strong (040) orientation with an orthorhombic crystal structure and a grain size of 0.12 mu m. The films showed an electrical resistivity of 6.1 Omega cm with an activation energy of 0.26 eV. These films exhibited an optical band gap of 1.37 eV and had a high optical absorption coefficient (> 10(4) cm(-1)) above the band-gap energy. The results obtained were analysed to evaluate the potentiality of the co-evaporated SnS films as an absorber layer in solar photovoltaic devices.
Resumo:
PbSnS2 thin film has been prepared for the first time by spray pyrolysis technique on FTO substrate at 570K. The preliminary optical and structural characteristics of the film have been reported. The optical studies showed that the value of the fundamental absorption edge lies at 1.47eV and a low energy absorption band tail has been observed. The prepared film is p- type electrical conductivity, polycrystalline in nature and has an orthorhombic crystal structure. The value of an average grain size of the film is 350Å.
Resumo:
Solid state reactive diffusion in binary Au-Sn system has been studied using the diffusion couple consisting of pure elements Au and Sn annealed in the temperature range of 180-100 degrees C for 25 h Interdiffusion zone consists of four intermetallic phases Au5Sn, AuSn, AuSn2, and AuSn4 Activation energy for parabolic growth constant and integrated diffusivity for each phase has been calculated to indicate about the possible mechanism for diffusion controlled growth process Parabolic growth constant of individual phases has also been compared Kirkendall marker plane position has been indicated in the interdiffusion zone and furthermore the ratio of intrinsic diffusivities of species has also been determined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Bismuth vanadate (BVO) thin films were fabricated on indium tin oxide (ITO) coated glass substrates using pulsed laser ablation technique and investigated their structural, optical and electrical properties. The use of the indium tin oxide coated glass substrate resulted in reducing the leakage current characteristics of crystalline BVO thin films. The X-ray diffraction (XRD) studies confirmed the monophasic nature of the post annealed (500 A degrees C/1 h) films. The atomic force microscopy indicated the homogeneous distribution of crystallites in the as-deposited films. The as-deposited and the post annealed films were almost 90% transparent (380-900 nm) as confirmed by optical transmission studies. Dielectric constant of around 52 was attained accompanied by the low dielectric loss of 0.002 at 10 kHz for post annealed films. The leakage current of the post annealed BVO films on ITO coated glass substrates measured at room temperature was 8.1 x 10(-8) A at an applied electric field of 33 kV/cm, which was lower than that of the films with platinum and SrRuO3 as the bottom electrodes.
Resumo:
The short‐circuit current density (Jsc) of indium tin oxide (ITO/silicon solar cells has been shown both theoretically and experimentally to be a function of the thickness of the ion beam sputtered ITO layer. These results can be accounted for by computing the optical reflection from the ITO/silicon interface.
Resumo:
A novel mechanism is proposed for efficient manipulation of transport forces acting on the droplets during spray pyrolytic deposition of thin films. A ‘‘burst mode’’ technique of spraying is used to adjust the deposition conditions so as to transport the droplets under the new mechanism. Transparent, conducting thin films of undoped tin oxide prepared by this method showed significant improvement in growth rate. The films are found to be of fairly good quality with optical transmission of 82% and sheet resistance of 35 Ω/☒. The films are chemically homogeneous and grow preferentially along 〈200〉 direction.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Glasses of the alkali tin phosphate system have been investigated. The infrared absorption and fluorescence spectra of the glasses have been examined. It is found that tin is present in both + 2 and + 4 oxidation states. Also tin ions occupy four- or six-coordinated sites in the glass.
Resumo:
Nanoembedded lead-tin alloys in aluminum matrix were synthesized by rapid solidification processing. These melt-spun aluminum alloys were then investigated using XRD, EDX and TEM. The XRD study reveals that the melt-spun samples contain elemental aluminum, lead and tin. The TEM analysis shows that embedded particles in aluminium matrix have a distinct two-phase contrast of lead and tin. The lead and tin in these nanoalloys exhibit an orientation relationship with the matrix aluminum and with each other. DSC studies were conducted to reveal the melting and solidification characteristics of these embedded nanoalloys. DSC thermograms exhibit features of multiple solidification exotherms on thermal cycling, which can be attributed to sequential melting and solidification of lead and tin in the respective alloys.
Resumo:
New metallurgical and ethnographic observations of the traditional manufacture of specular high-tin bronze mirrors in Kerala state of southern India are discussed, which is an exceptional example of a surviving craft practice of metal mirror-making in the world. The manufacturing process has been reconstructed from analytical investigations made by Srinivasan following a visit late in 1991 to a mirror making workshop and from her technical studies of equipment acquired by Glover in March 1992 from another group of mirror makers from Pathanamthita at an exhibition held at Crafts Museum, Delhi. Finished and unfinished mirror from two workshops were of a binary, copper-tin alloy of 33% tin which is close to the composition of pure delta phase, so that these mirrors are referred to here as ‘delta’ bronzes. For the first time, metallurgical and field observations were made by Srinivasan in 1991 of the manufacture of high-tin ‘beta’ bonze vessels from Palghat district, Kerala, i‥e of wrought and quenched 23% tin bronze. This has provided the first metallurgical record for a surviving craft of high-tin bronze bowl making which can be directly related to archaeological finds of high-tin bronze vessels from the Indian subcontinent and Southeast Asia. New analytical investigations are presented of high-tin beta bronzes from the Indian subcontinent which are some of the earliest reported worldwide. These coupled with the archaeometallurgical evidence suggests that these high-tin bronze techniques are part of a long, continuing, and probably indigenous tradition of the use of high-tin bronzes in the Indian subcontinent with finds reported even from Indus Valley sites. While the source of tin has been problematic, new evidence on bronze smelting slags and literary evidence suggests there may have been some sources of tin in South India.
Resumo:
Nanocrystalline tin oxide powder was prepared using a solution precipitation technique after adding the surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT). Powders were characterized using X-ray diffraction (XRD), surface area (BET) and transmission electron microscopy (TEM). The gas sensitivity for surfactant added powders increased for liquid petroleum gas (LPG) as well as compressed natural gas (CNG), due to the decreased particle size and the increased surface area. The LPG gas sensitivity increased several times using phosphorus treated surfactant AOT.