966 resultados para ISOLATED PAPILLARY MUSCLE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physical exercises have been recommended in the prevention of non-insulin dependent diabetes mellitus (NIDDM), but the mechanisms involved in this intervention are not yet fully understood. Experimental models offer the opportunity for the study of this matter. The present study was designed to analyze the diabetes evolution in rats submitted to neonatal treatment with alloxan with the objective of verifying the suitability of the model to future studies with exercises. For this, newly born rats (6 days old) received intraperitoneal alloxan (A = 200 mg/kg of body weight). Rats injected with vehicle (citrate buffer) were used as controls (C). The fasting blood glucose level (mg/dL) was higher in the alloxan group at the day 28 (C=47.25 +/- 5.08; A=54.51 +/- 7.03) but not at the 60 day of age (C=69.18 +/- 8.31; A=66.81 +/- 6.08). The alloxan group presented higher blood glucose level during glucose tolerance test (GTT) (mg/dL. 120 min) in relation to the control group both at day 28 (C=16908.9 +/- 1078.8; A=21737,7 +/- 1106.4) and at day 60 (C=11463.45 +/- 655.30; A=15282.21 +/- 1221.84). Insulinaemia during GTT (ng/mL.120 min) was lower at day 28 (C=158.67 +/- 33.34; A=123.90 +/- 19.80), but presented no difference at day 60 (C=118.83 +/- 26.02; A=97.8 +/- 10.88). At day 60, the glycogen concentration in the soleus muscle (mg/100mg) was lower in the alloxan group (0.3 +/- 0.13) in relation to the control group (0.5 +/- 0.07). No difference was observed between groups in relation to (mu mol/g.h): Glucose Uptake (C = 5.8 +/- 0.63; A = 5.2 +/- 0.73); Glucose Oxidation (C= 4.3 +/- 1.13; A= 3.9 +/- 0.44); Glycogen Synthesis (C= 0.8 +/- 0.18; A= 0.7 +/- 0.18) and Lactate Production (C= 3.8 +/- 0.8; A= 3.8 0.7) by the isolated soleus muscle. The glucose-stimulated insulin secretion (16.7mM) by the isolated islets (ng/5 islets. h) of the alloxan group was lower (14.3 +/- 4.7) than the control group (32.0 +/- 7.9). Thus, we may conclude that this neonatal diabetes induction model gathers interesting characteristics and may be useful for further studies on the role of the exercise in the diabetes mellitus appearance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent decades, metabolic syndrome has become a public health problem throughout the world. Longitudinal studies in humans have several limitations due to the invasive nature of certain analyses and the size and randomness of the study populations. Thus, animal models that are able to mimic human physiological responses could aid in investigating metabolic disease. Thus, the present study was designed to analyze metabolic syndrome markers in albino Wistar rats (Rattus norvegicus) of different ages. The following parameters were assessed at two (young), four (adult), six (adult), and twelve (mature) months of age: glucose tolerance (glucose tolerance test); insulin sensitivity (insulin tolerance test); fasting serum glucose, triglycerides, total cholesterol, HDL cholestero, and LDL cholesterol concentrations; glucose uptake in isolated soleus muscle; and total lipid concentration in subcutaneous, mesenteric, and retroperitoneal adipose tissue. We found that aging triggered signs of metabolic syndrome in Wistar rats. For example, mature rats showed a significant increase in body weight that was associated. In addition, mature rats showed an increase in the serum concentration of triglycerides, total cholesterol, and LDL cholesterol, which is characteristic of dyslipidemia. There was also an increase in serum glucose compared with the younger groups of animals. Therefore, aging Wistar rats appear to be an interesting model to study the changes related to metabolic syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study was designed to determine the exercise intensity equivalent to the metabolic aerobic/anaerobic transition of alloxan diabetic rats, through lactate minimum test (LMT), and to evaluate the effects of swimming exercise at this intensity (LM) on the glucose and protein metabolism of these animals. Adult male Wistar rats received alloxan (SD, alloxan-injected rats that remained sedentary) intravenously (30 mg kg(-1) body weight) for diabetes induction. As controls (SC, vehicle-injected rats that remained sedentary), vehicle-injected rats were utilized. Two weeks later, the animals were submitted to oral glucose tolerance test (oGTT) and LMT. After the tests, some of the animals were submitted to swimming exercise training [TC (vehicle-injected rats that performed a 6-week exercise program) and TD (alloxan-injected rats that performed a 6-week exercise program)] for I h day(-1), 5 days week(-1), with an overload equivalent to LM determined by LMT, for 6 weeks. At the end of the experiment, the animals were submitted to a second LMT and oGTT, and blood and skeletal muscle assessments (protein synthesis and degradation in the isolated soleus muscle) were made. The overload equivalent to LM at the beginning of the experiment was lower in the SID group than in the SC group. After training, the overload equivalent to LM was higher in the TC and TD groups than in the SC and SD groups. The blood glucose of TD rats during oGTT was lower than that of SD rats. Protein degradation was higher in the SD group than in other groups. We conclude that LMT was sensitive to metabolic and physiologic alterations caused by uncontrolled diabetes. Training at LM intensity improved aerobic condition and the glucose and protein metabolism of alloxan diabetic rats. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: This study compared the influence of fasting/refeeding cycles and food restriction on rat myocardial performance and morphology. Methods: Sixty-day-old male Wistar rats were submitted to food ad libitum (C), 50% food restriction (R50), and fasting/refeeding cycles (RF) for 12 weeks. Myocardial function was evaluated under baseline conditions and after progressive increase in calcium and isoproterenol. Myocardium ultrastructure was examined in the papillary muscle. Results: Fasting/refeeding cycles maintained rat body weight and left ventricle weight between control and food-restricted rats. Under baseline conditions, the time to peak tension (TPT) was more prolonged in R50 than in RF and C rats. Furthermore, the maximum tension decline rate (-dT/dt) increased less in R50 than in RF with calcium elevation. While the R50 group showed focal changes in many muscle fibers, such as the disorganization or loss of myofilaments, polymorphic mitochondria with disrupted cristae, and irregular appearance or infolding of the plasma membrane, the RF rats displayed few alterations such as loss or disorganization of myofibrils. Conclusion: Food restriction promotes myocardial dysfunction, not observed in RF rats, and higher morphological damage than with fasting/refeeding. The increase in TPT may be attributed possibly to the disorganization and loss of myofibrils; however, the mechanisms responsible for the alteration in -dT/dt in R50 needs to be further clarified. © 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências da Motricidade - IBRC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)