1000 resultados para IRRADIATED HUMAN DENTIN
Resumo:
The aim of this study was to evaluate the number and the diameter of dentin tubules in root canals, in the cervical, middle, and apical thirds, of human and bovine teeth. Twenty-four single-rooted, human premolars were divided into four groups (n = 6): GH1, 10 to 15 years; GH2, 16 to 30 years; GH3, 31 to 45 years; and GH4, 46 to 80 years; and 24 bovine incisors were divided into four groups (n = 6): GB1, central; GB2, lateral first; GB3, lateral second; and GB4, lateral third. The crowns were removed from the specimens, which were then debrided, sectioned longitudinally in the vestibular-lingual direction, and submitted to ultrasonic cleaning. Scanning electron microscopic evaluations were made with 1,000x and 5,000x magnification. According to the root thirds, statistically significant differences were found both for the number and the diameter of dentin tubules, with the cervical third presenting the highest mean values for both specimen types. As regards the number of dentin tubules, it was observed that the bovine specimens presented a significantly higher mean value than the human specimens; this difference was not observed when the diameters of the two types were compared.
Resumo:
Many in vivo studies have stated that the response of the dentin/pulp complex does not depend on the dental material used as the liner or pulp-capping agent. However, several in vitro studies have reported the metabolic cytotoxic effects of resin components applied to fibroblast and odontoblast cell lines. The aim of this study was to evaluate the human pulp response following direct pulp capping with current bonding agents and calcium hydroxide (CH). Sound premolars scheduled for orthodontic extraction had their pulp tissue mechanically exposed. After hemorrhage control and total acid conditioning, the experimental bonding agents, including All Bond 2, Scotchbond MP-Plus, Clearfil Liner Bond 2, and Prime & Bond 2.1 were applied on the pulp exposure site. CH saline paste was used as the control pulp-capping agent. All cavities were restored with Z-100 resin composite according to the manufacturer's instructions. Following extractions, the teeth were processed for microscopic evaluation. In the short term, the bonding agents elicited a moderate inflammatory pulp response with associated dilated and congested blood vessels adjacent to the pulp exposure site. A mild inflammatory pulp response was observed when Clearfil Liner Bond 2 or CH was applied on the pulp exposures. With time, macrophages and giant cells engulfing globules and components of all experimental bonding agents displaced into the pulp space were seen. This chronic inflammatory response did not allow complete pulp repair, which interfered with the dentin bridge formation. Pulp exposures capped with CH exhibited an initial organization of elongated pulp cells underneath the coagulation necrosis. CH stimulated early pulp repair and dentin bridging that extended into the longest period. The bonding agents evaluated in the present study cannot be recommended for pulp therapy on sound human teeth.
Resumo:
The aim of this investigation was to evaluate the osteoinductive property of autogenous demineralized dentin matrix (ADDM) on experimental surgical bone defects in the parietal bone of rabbits using the guided bone regeneration (GBR) technique incorporating human amniotic membrane (HAM). Thirty-six rabbits were divided into 2 groups, HAM and ADDM+HAM. It was possible to conclude that HAM did not interfere with bone repair and was resorbed. Slices of ADDM induced direct bone formation and were incorporated by the newly formed bone tissue and remodeled. The bone defects healed faster in the ADDM+HAM group than in the group with HAM only.
Resumo:
Objective: The aim of this study is to analyze the effects of copper vapor laser radiation on the radicular wall of human teeth. Materials and Methods: Immediately after the crowns of 10 human uniradicular teeth were cut along the cement-enamel junction, a chemical-surgical preparation of the radicular canals was completed. Then the roots were longitudinally sectioned to allow for irradiation of the surfaces of the dentin walls of the root canals. The hemi-roots were separated into two groups: one (control) with five hemi-roots that were not irradiated, and another (experimental) with 15 hemi-roots divided into three subgroups that were submitted to the following exposure times: 0.02,0.05, and 0.1 s. A copper vapor laser (510.6 nm) with a total average power of 6.5 W in green emission, frequency of 16.000 Hz, and pulse duration of 30 ns was used. Results: The results obtained by scanning electron microscope analysis showed the appearance of a cavity in the region of laser beam impact, with melting, recrystallization, and cracking on the edges of the dentin of the cavity due to heat diffusion. Conclusions: We determined that the copper vapor laser produces significant morphologic changes in the radicular wall of human teeth when using the parameters in this study. However, further research should be done to establish parameters that are compatible with dental structure in order to eliminate thermal damages. © Mary Ann Liebert, Inc.
Resumo:
Aim : To compare the push-out strength of bovine- and human-root dentin and, thus, evaluate the suitability of bovine-root dentin to substitute human-root dentin for bond strength testing. Materials and Methods : Ten single-rooted human-teeth and ten bovine incisors were prepared using a #3 bur of a fiber post system (12 mm long). The posts were duplicated with resin cement (Duolink). The root canals were treated with All Bond 2 adhesive system and the resin posts were cemented using Duolink. The specimens were cut perpendicular to their long axis, yielding disc-specimens with 1.5 mm thickness, which were submitted to a push-out test (1 mm/min). Ten bond strength values per group (n = 10) were used for statistical analysis (Student t test, a =.05). Results : Statistically significant differences were found for the bond strength values between bovine- (4.1 1.3 MPa) and human-root dentin (8.6 5.7 MPa) (P =.0001). Conclusion : The push-out strengths of bovine- and human-root dentin were statistically different.
Resumo:
OBJECTIVES: The purpose of this in vitro study was to quantify the alterations in human root dentin permeability after exposure to dietary acids and to evaluate the effect of toothbrushing after acid application. METHOD AND MATERIALS: Extracted human third molars had their crowns sectioned above the CEJ, pulp tissue removed, and cervical root dentin exposed using a high-speed bur (approximately 1 mm in depth of substance loss). From each root fragment, one specimen was prepared. A total of 25 specimens were used and distributed randomly into five groups. The specimens were attached to a hydraulic pressure apparatus to evaluate the alterations of root dentin permeability after exposure to different acids. Dentin permeability was measured after the following sequential steps: (1) treatment with EDTA for 3 minutes to obtain the maximum permeability; (2) root planing to create a smear layer; (3) exposure to different acidic substances for 5 minutes (vinegar, cola drink, lemon juice, white wine, and orange juice); and (4) brushing for 3 minutes. RESULTS: All acidic substances increased dentin permeability after root planing. Lemon juice produced higher values for permeability when compared to the other substances (P = .009); moreover, orange juice showed similar results (P < .02) except when compared to vinegar (P = .12). Brushing right after acid exposure significantly reduced dentin permeability except in the vinegar group (P = .07). CONCLUSION: Under the experimental conditions, dietary acids increased root dentin permeability, and immediate brushing reduced permeability levels.
Resumo:
Purpose: This in vitro study aimed to evaluate the effect of different fruit juice drinks available in the Brazilian market on smear layer removal and dentinal tubules opening, as well as to verify the effect of toothbrushing subsequently to the juices exposure. Methods: Dentin specimens were prepared and randomly distributed into the control group (distilled water) and twelve types of fruit juice drinks (cashew, orange, mandarin, apple, passion fruit, guava, strawberry, grape, mango, pear, peach, pineapple). The following treatments were applied: immersion or immersion + brushing. After preparation for SEM, photomicrographs were assessed using an index of smear layer removal. Results: No significant differences regarding smear layer removal and dentinal tubules exposure could be observed between the groups after both treatments (Kruskal-Wallis, post-hoc paired comparisons, P>0.05). The control solution and the fruit juice drinks were not able to remove smear layer and to open dentinal tubules. Significant difference between the applied treatments was detected only for the mango juice group (Mann-Whitney, P<0.05). Conclusion: Under the experimental conditions, the different fruit juice drinks did not promote significant alterations on human radicular dentin morphology regardless of the subsequent application of brushing procedures. Copyright: © 2011 Zandim et al.
Resumo:
The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student's t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.
Resumo:
The aim of this study was to evaluate the effects of different irrigants on sealer-dentin bond strength when using Real Seal. Thirty single-rooted teeth were divided into 3 groups. In one group, the teeth were irrigated with 3 mL of 2.5% NaOCl after each file change, flushed with 17% EDTA for 3 min and finally rinsed with 3 mL of 2.5% NaOCl. In the other two groups, rinse with NaOCl was replaced with 2% chlorhexidine gluconate (CHX) and 0.9% saline, respectively. Each root was sectioned transversally into apical, middle and coronal thirds to obtain 2-mm-thick slices. Each slice was filled with Real Seal and Resilon. Push-out test was used to analyze bond strength and failure modes were classified as adhesive, cohesive or mixed, according to SEM observations. The push-out test did not reveal any statistically significant difference (p>0.05) between the irrigants. However, the groups exhibited significantly different (p<0.05) bond strengths in terms of the root canal third. Higher bond strength was observed at the apical third when compared with coronal third, while middle third presented intermediary values. Fifteen specimens were analyzed by SEM (5 per group). Eleven specimens exhibited adhesive failures (5 in saline, 4 in NaOCl and 2 in CHX group); 2 cohesive failures were observed in the CHX group, and 1 mixed failure each was observed in the CHX and NaOCl groups. The tested irrigants did not influence the bond strength of Resilon and Real Seal to dentin. The apical third exhibited higher mean bond strengths and adhesive failures were predominant.
Resumo:
The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. Materials and Methods: One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm2). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photoactivated for 20 s. Each group was subdivided into 4 subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey's test and Dunnett's test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). Results: No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). Conclusion: The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: A morphological and ultra-structural study of copper vapor laser (λ = 510.6 nm) effects on enamel and dentine was performed to show the effects of this radiation. Methods: A total of 15 human molars were cut in half; 15 pieces were separated for irradiation on enamel and 15 for dentine. These two groups were further divided into five experimental groups, including a control group, comprised of three half-sections each, irradiated by a CVL laser with a power of 7 W, a repetition rate of 15,000 pulses/sec and exposed at 500, 600, and 800 msec and 1 sec irradiation times with a 5-sec interval between irradiations. Results: In an ultra-structural SEM exam, we observed that on the enamel surfaces irradiated for 1 sec there was morphological alteration that consisted of catering, flaking, and melting on the surfaces. There was no alteration for the other exposure times. On the dentine teeth irradiated for 1 sec, we observed an evident ultra-structural alteration of melted tissue and loss of morphological characteristics. In the dentine group irradiated by 800 msec, we observed ablation and a partial loss of morphological characteristics. In the dentine groups irradiated by 500 and 600 msec, no alteration was observed. Conclusions: The results showed that irradiation with CVL promoted morphologic changes in the enamel as well as in the dentine and demonstrated a need for future studies in order to establish a safe protocol for further use in the odontological practice.
Resumo:
Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS). Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM. Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.
Resumo:
Objective: The aim of this study was to evaluate the microhardness of radicular dentin after treatment with 980-nm diode laser and different irrigant solutions. Background data: There are few reports of the consequences of diode laser irradiation emitted at 980 nm on the mechanical properties of dentin. Methods: Seventy-two single canal, human canines with complete root formation were randomly distributed among three groups (n = 24), according to the irrigant solution used in the biomechanical preparation: distilled water; 1% NaOCl; and, 1% NaOCl + 17% EDTA. These groups subsequently were divided into three subgroups (n = 8), according to the diode laser parameter: no irradiation (control); 1.5W/100 Hz; and 3.0 W/100 Hz. Laser was applied with helicoidal movements for 20 sec. Roots were sectioned in slices and the fragment corresponding to the middle third was submitted to the microhardness test (KHN) at depths of 30, 90, 150, and 300 mu m. Results: ANOVA and Tukey tests showed that the microhardness of the groups irradiated with 1.5 W/100 Hz (49.7 +/- 11.2) and 3.0W/100 Hz (50.6 +/- 11.9) were statistically similar to each other (p > 0.05) and different (p < 0.05) from the non-irradiated group (45.0 +/- 9.7). Higher microhardness values were obtained at 150 mu m (49.2 +/- 11.0) and 300 mu m (52.3 +/- 11.3) which were similar among themselves and different (p < 0.05) only at the depth of 30 mu m (44.4 +/- 10.5). No differences were found among the irrigant solutions (p > 0.05). Conclusions: The microhardness of the radicular dentin increased after irradiation with 980-nm diode laser.
Resumo:
We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.