652 resultados para IONIC SURFACTANTS
Resumo:
Purpose, An in vitro study was carried out to determine the iontophoretic permeability of local anesthetics through human epidermis. The relationship between physicochemical structure and the permeability of these solutes was then examined using an ionic mobility-pore model developed to define quantitative relationships. Methods. The iontophoretic permeability of both ester-type anesthetics (procaine, butacaine, tetracaine) and amide-type anesthetics (prilocaine, mepivacaine, lidocaine, bupivacaine, etidocaine, cinchocaine) were determined through excised human epidermis over 2 hrs using a constant d.c. current and Ag/AgCl electrodes. Individual ion mobilities were determined from conductivity measurements in aqueous solutions. Multiple stepwise regression was applied to interrelate the iontophoretic permeability of the solutes with their physical properties to examine the appropriateness of the ionic mobility-pore model and to determine the best predictor of iontophoretic permeability of the local anesthetics. Results. The logarithm of the iontophoretic permeability coefficient (log PCj,iont) for local anesthetics was directly related to the log ionic mobility and MW for the free volume form of the model when other conditions are held constant. Multiple linear regressions confirmed that log PCj,iont was best defined by ionic mobility (and its determinants: conductivity, pK(a) and MW) and MW. Conclusions. Our results suggest that of the properties studied, the best predictors of iontophoretic transport of local anesthetics are ionic mobility (or pK(a)) and molecular size. These predictions are consistent with the ionic mobility pore model determined by the mobility of ions in the aqueous solution, the total current, epidermal permselectivity and other factors as defined by the model.
Resumo:
We have grown surfactant-templated silicate films at the air-water interface using n-alkyltrimethylammonium bromide and chloride in an acid synthesis with tetraethyl orthosilicate as the silicate source. The films have been grown with and without added salt (sodium chloride, sodium bromide) and with n-alkyl chain lengths from 12 to 18, the growth process being monitored by X-ray reflectometry. Glassy, hexagonal, and lamellar structures have been produced in ways that are predictable from the pure surfactant-water phase diagrams. The synthesis appears to proceed initially through an induction period characterized by the accumulation of silica-coated spherical micelles near the surface. All syntheses, except those involving C(12)TACl, show a sudden transformation of the spherical micellar phase to a hexagonal phase. This occurs when the gradually increasing ionic strength and/or changing ethanol concentration is sufficient to change the position of boundaries within the phase diagram. A possible mechanism for this to occur may be to induce a sphere to rod transition in the micellar structure. This transformation, as predicted from the surfactant-water phase diagram, can be induced by addition of salts and is slower for chloride than bromide counteranions. The hexagonal materials change in cell dimension as the chain length is changed in a way consistent with theoretical model predictions. All the materials have sufficiently flexible silica frameworks that phase interconversion is observed both from glassy to hexagonal and from hexagonal, to lamellar and vice versa in those surfactant systems where multiple phases are found to exist.
Resumo:
We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na(+), K(+))-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 parts per thousand or 33 parts per thousand salinity. C ornatus is isosmotic after acclimation to 21 parts per thousand but is hyposmotic at 33 parts per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 parts per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH(4)(+) modulates enzyme affinity for K(+), which increases 187-fold in crabs acclimated to 33%. salinity. The (Na(+), K(+))-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 parts per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 parts per thousand), with little change in K(M) values (approximate to 50 mu mol L(-1)). K(+) together with NH(4)(+) synergistically stimulated activity to maximum rates of approximate to 240 nmol Pi min(-1) mg(-1). K, values for ouabain inhibition (approximate to 110 mu mol L(-1)) decreased to 44.9 +/- 1.0 mu mol L(-1) (21 parts per thousand) and 28.8 +/- 1.3 mu mol L(-1) (33 parts per thousand) in the presence of both K(+) and NH(4)(+). Assays employing various inhibitors suggest the presence of mitochondrial F(0)F(1)- and K(+)- and V-ATPase activities in the gill microsomes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
Layered Double Hydroxides are a class of materials that can be described as positively charged planar layers consisting of divalent and trivalent cations in the center of edge-sharing octahedra. The positive charge in the LDH layers must be compensated by anion intercalation. These materials have applications that include adsorption and/or sorption of anionic species. Cholic acid is one of the main acids produced by the liver. It promotes transport of lipids through aqueous systems. This work reports on the adsorption of Cholic acid anions in MgAl-CO3-LDH taking ionic strength, pH, and temperature effects into account. The adsorbent was characterized by different techniques. Cholate anion adsorption was performed at two different temperatures (298 and 323 K), two different ionic strength conditions (0.0 and 0.1 M of NaCl), and two different pH values (7.0 and 10.0). The results show that the sorption of Cholate anions in calcined LDH can remove a considerable amount of these anions from the medium. Cholate anion adsorption in the LDH with no calcining also occurs, but at a lower amount.
Resumo:
N,N-Dimethyl-pyrrolidinium iodide, and the effect of doping with LiI, has been investigated using DSC, NMR, and impedance spectroscopy. It was found that the addition of a small amount of LiI enhances the ionic conductivity by LIP to 3 orders of magnitude for this ionic solid. Furthermore, a slight decrease in phase transition onset temperatures, as well as the appearance of a superimposed narrow line in the H-1 NMR spectra with dopant, suggest that the LiI facilitates the mobility of the matrix material, possibly by the introduction of vacancies within the lattice. Li-7 NMR line width measurements reveal a narrow Li line width, decreasing in width and increasing in intensity with temperature, indicating mobile Li ions.
Resumo:
A flow tagging technique based upon ionic fluorescence in strontium is investigated for applications to velocity measurements in gas flows. The method is based upon a combination of two laser based spectroscopic techniques, i.e. resonantly-enhanced ionisation and laser-induced ionic fluorescence. Strontium is first ionised and then planar laser-induced fluorescence is utilised to give 2D 'bright images' of the ionised region of the flow at a given time delay. The results show that this method can be used for velocity measurements. The velocities were measured in two types of air-acetylene flames - a slot burner and a circular burner yielding velocities of 5.1 +/- 0.1 m/s and 9.3 +/- 0.2 m/s, respectively. The feasibility of the method for the determination of velocities in faster flows than those investigated here is discussed.
Resumo:
Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.
Resumo:
Quaternary ammonium surfactants were used to control the pore structure of bentonite intercalated with a mixed hydro-sol of silicon and titanium. Porous clay heterostructures of alumina and laponite were prepared in the presence of polyethylene oxide (PEO) surfactants. Participation of the surfactants in the synthesis results in significant changes in the structure of porous clay products. Surfactants are involved in different mechanisms, In the case of bentonite, the mean size of the framework pores was directly proportional to the chain length of the quaternary ammonium surfactants. This indicates a molecular templating mechanism, similar to that observed in the synthesis of MCM41. However, in the case of laponite, the size and volume of the mesopores were related to the amount of PEO surfactants used. By using an appropriate surfactant, we can obtain highly porous clays with various pore structures. Introducing surfactants during intercalation is an efficient strategy for the molecular engineering of porous clay adsorbents and catalysts. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The expression and properties of ionic channels were investigated in dissociated neurons from neonatal and adult rat intracardiac ganglia. Changes in the hyperpolarization-activated and ATP-sensitive K+ conductances during postnatal development and their role in neuronal excitability were examined. The hyperpolarization-activated nonselective cation current, I-h, was observed in all neurons studied and displayed slow time-dependent rectification. An inwardly rectifying K+ current, I-K(I), was present in a population of neurons from adult but not neonatal rats and was sensitive to block by extracellular Ba2+. Using the perforated-patch recording configuration, an ATP-sensitive K+ (K-ATP) conductance was identified in greater than or equal to 50% of intracardiac neurons from adult rats. Levcromakalim evoked membrane hyperpolarization, which was inhibited by the sulphonylurea drugs. glibenclamide and tolbutamide. Exposure to hypoxic conditions also activated a membrane current similar to that induced by levcromakalim and was inhibited by glibenclamide. Changes in the complement of ion channels during postnatal development may underlie observed differences in the function of intracardiac ganglion neurons during maturation. Furthermore, activation of hyperpolarization-activated and KATP channels in mammalian intracardiac neurons may play a role in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Low-temperature anneals (1200 degreesC for 40 h) of 8 mol% yttria-stabilised zirconia, prior to the samples being sintered at 1500 degreesC, had the effect of improving the ionic conductivity of the specimens. The presence Of SiO2 in the specimens was shown to be detrimental, however. Irrespective of the SiO2 content, this type of heat treatment also leads to improvements in conductivity. Extensive microstructural analysis provided indication of the mechanism of this phenomenon. This included selective formation of zircon, relief of sintering strain leading to the formation of coherent grain boundaries and segregation effects. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
The concept of crystallographic index termed the effective index is suggested and applied to the design of ceria (CeO2)-based electrolytes to maximize oxide ionic conductivity. The suggested index considers the fluorite structure, and combines the expected oxygen vacancy level with the ionic radius mismatch between host and dopant cations. Using this approach, oxide ionic conductivity of Sm- or La-doped CeO2-based system has been optimized and tested under operating conditions of a solid oxide fuel cell. In the observation of microstructure in atomic scale, both Sm-doped CeO2 and La-doped CeO2 electrolytes had large micro-domains over 10 nm in the lattice. On the other hand, Sm or La and alkaline earth co-doped CeO2-based electrolytes with high effective index had small micro-domains around 1-3 nm in the microstructure. The large micro-domain would prevent oxide ion from passing through the lattice. Therefore, it is concluded that the improvement of ionic conductivity is reflected in changes of microstructure in atomic scale. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
n a recent paper we reported an experimental study of two N-alkylimidazolium salts. These ionic compounds exhibit liquid crystalline behaviour with melting points above 50 degrees C in bulk. However, if they are sheared, a (possibly non-equilibrium) lamellar phase forms at room temperature. Upon shearing a thin film of the material between microscope slides, textures were observed that are strikingly similar to liquid (wet) foams. The images obtained from polarising optical microscopy (POM) were found to share many of the known quantitative properties of a two-dimensional foam coarsening process. Here we report an experimental study of this foam using a shearing system coupled with POM. The structure and evolution of the foam are investigated through the image analysis of time sequences of micrographs obtained for well-controlled sets of physical parameters (sample thickness, shear rate and temperature). In particular, we find that there is a threshold shear rate below which no foam can form. Above this threshold, a steady-state foam pattern is obtained where the mean cell area generally decreases with increasing shear rate. Furthermore, the steady-state internal cell angles and distribution of the cell number of sides deviate from their equilibrium (i.e. zero-shear) values.
Resumo:
Este trabalho foi desenvolvido no âmbito de um projecto europeu, BIOPRODUCTION, tendo em vista o desenvolvimento de dois tipos de biomaterias funcionais: ésteres de açúcares com ácidos gordos (SFAE) e metacrilatos funcionais. A síntese laboratorial do biosurfactante SFAE foi efectuada utilizando como matérias-primas diferentes sacáridos, nomeadamente sacarose, glucose e melaço de cana-de-açúcar (mistura de polissacáridos), e ésteres metílicos de ácidos gordos (FAME) de óleos vegetais, tais como colza e coco. Esta síntese é constituída por dois passos: acilação dos açúcares com anidrido acético, e transesterificação do açúcar acilado com FAME, utilizando triflatos de lantanídeos como catalisador. Diferentes estequiometrias foram testadas, bem como diferentes processos de modo a evitar a degradação dos açúcares. Foram efectuados testes preliminares de emulsão e calculou-se, empiricamente, o respectivo HLB. Procedeu-se à caracterização do produto através de FTIR e RMN e também à optimização iterativa do processo de síntese. A modificação, à escala laboratorial, de metacrilatos de metilo (MMA) realizou-se recorrendo à sua transesterificação com polióis convencionais. Efectuaram-se testes de reticulação do produto com diferentes catalisadores e iniciadores para posterior aplicação em revestimentos de borracha. Por fim, para ambos os produtos serão necessários estudos adicionais de caracterização, nomeadamente tensão superficial para os biosurfactantes e propriedades mecânicas para polímeros modificados com MMA.