877 resultados para INTERPRETATION
Resumo:
The amplitude-modulation (AM) and phase-modulation (PM) of an amplitude-modulated frequency-modulated (AM-FM) signal are defined as the modulus and phase angle, respectively, of the analytic signal (AS). The FM is defined as the derivative of the PM. However, this standard definition results in a PM with jump discontinuities in cases when the AM index exceeds unity, resulting in an FM that contains impulses. We propose a new approach to define smooth AM, PM, and FM for the AS, where the PM is computed as the solution to an optimization problem based on a vector interpretation of the AS. Our approach is directly linked to the fractional Hilbert transform (FrHT) and leads to an eigenvalue problem. The resulting PM and AM are shown to be smooth, and in particular, the AM turns out to be bipolar. We show an equivalence of the eigenvalue formulation to the square of the AS, and arrive at a simple method to compute the smooth PM. Some examples on synthesized and real signals are provided to validate the theoretical calculations.
Resumo:
The study of recession flows offers fundamental insights into basin hydrological processes and, in particular, into the collective behavior of the governing dominant subsurface flows and properties. We use here an existing geomorphological interpretation of recession dynamics, which links the exponent in the classic recession curve -dQ/dt - kQ(alpha) to the geometric properties of the time-varying drainage network to study the general properties of recession curves across a wide variety of river basins. In particular, we show how the parameter k depends on the initial soil moisture state of the basin and can be made to explicitly depend on an index discharge, representative of initial sub-subsurface storage. Through this framework we obtain a non-dimensional, event-independent, recession curve. We subsequently quantify the variability of k across different basins on the basis of their geometry, and, by rescaling, collapse curves from different events and basins to obtain a generalized, or `universal', recession curve. Finally, we analyze the resulting normalized recession curves and explain their universal characteristics, lending further support to the notion that the statistical properties of observed recession curves bear the signature of the geomorphological structure of the networks producing them. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We propose a new approach for producing precise constrained slices of programs in a language such as C. We build upon a previous approach for this problem, which is based on term-rewriting, which primarily targets loop-free fragments and is fully precise in this setting. We incorporate abstract interpretation into term-rewriting, using a given arbitrary abstract lattice, resulting in a novel technique for slicing loops whose precision is linked to the power of the given abstract lattice. We address pointers in a first-class manner, including when they are used within loops to traverse and update recursive data structures. Finally, we illustrate the comparative precision of our slices over those of previous approaches using representative examples.
Resumo:
Brain signals often show fluctuations in particular frequency bands, which are highly conserved across species and are associated with specific behavioural states. Such rhythmic patterns can be captured in the local field potential (LFP), which is obtained by low-pass filtering the extracellular signal recorded from microelectrodes. However, LFP also captures other neural processes that are associated with spikes, such as synaptic events preceding a spike, low-frequency component of the action potential (spike bleed-through'') and spike afterhyperpolarization, which pose difficulties in the estimation of the amplitude and phase of the rhythm with respect to spikes. Here we discuss these issues and different techniques that have been used to dissociate the rhythm from other neural events in the LFP.
Resumo:
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations. (C) 2016 AIP Publishing LLC.
Resumo:
We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results with respect to the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. Our results have important consequences for online parameter estimation for non-linear non-Gaussian state-space models. We show how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward only recursion.
Resumo:
Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90degrees and 180degrees is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress sigma(infinity) and electric field E-infinity or (sigma(infinity), E-infinity) is replaced by strain e and electric displacement D-infinity or (epsilon(infinity), D-infinity). Mixed conditions (sigma(infinity),D-infinity) and (epsilon(infinity),E-infinity) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (E-y(infinity),sigma(y)(infinity)) for negative E-y(infinity) and (D-y(infinity), epsilon(y)(infinity)) for positive D-y(infinity) while the mechanical conditions sigma(y)(infinity) or epsilon(y)infinity are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
A new set of equations for the energies of the mean magnetic field and the mean plasma velocity is derived taking the dynamo effects into account, by which the anomalous phenomenon, T(i) > T(e), observed in some reversed field pinches (RFP's) is successfully explained.
Resumo:
This paper was presented at the Seminars of the Department of Foundations of Economic Analysis I, University of the Basque Country in September 2004.
Resumo:
pdf contains 14 pages)