994 resultados para INFLAMMATORY PAIN
Resumo:
The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressed cannabinoid receptor 2 (CB2). It is found in relatively high concentrations in many spices and food plants. A number of studies have shown that CB2 is critically involved in the modulation of inflammatory and neuropathic pain responses. In this study, we have investigated the analgesic effects of BCP in animal models of inflammatory and neuropathic pain. We demonstrate that orally administered BCP reduced inflammatory (late phase) pain responses in the formalin test in a CB2 receptor-dependent manner, while it had no effect on acute (early phase) responses. In a neuropathic pain model the chronic oral administration of BCP attenuated thermal hyperalgesia and mechanical allodynia, and reduced spinal neuroinflammation. Importantly, we found no signs of tolerance to the anti-hyperalgesic effects of BCP after prolonged treatment. Oral BCP was more effective than the subcutaneously injected synthetic CB2 agonist JWH-133. Thus, the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.
Resumo:
Translational research has not yet elucidated whether alterations in central pain processes are related to peripheral inflammatory processes in chronic pain patients. We tested the hypothesis that the concentration of cytokines in the peritoneal fluid of endometriosis patients with chronic pain correlate with parameters of hyperexcitability of the nociceptive system. The concentrations of 15 peritoneal fluid cytokines were measured in 11 patients with chronic pelvic pain and a diagnosis of endometriosis. Six parameters assessing central pain processes were recorded. Positive correlations between concentration of some cytokines in the peritoneal fluid and amplification of central pain processing were found. The results suggest that inflammatory mechanisms may be important in the pathophysiology of altered central pain processes and that cytokines produced in the environment of endometriosis could act as mediators between the peripheral lesion and changes in central nociceptive processes.
Resumo:
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) are the backbone of osteoarthritis pain management. We aimed to assess the effectiveness of different preparations and doses of NSAIDs on osteoarthritis pain in a network meta-analysis. METHODS For this network meta-analysis, we considered randomised trials comparing any of the following interventions: NSAIDs, paracetamol, or placebo, for the treatment of osteoarthritis pain. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) and the reference lists of relevant articles for trials published between Jan 1, 1980, and Feb 24, 2015, with at least 100 patients per group. The prespecified primary and secondary outcomes were pain and physical function, and were extracted in duplicate for up to seven timepoints after the start of treatment. We used an extension of multivariable Bayesian random effects models for mixed multiple treatment comparisons with a random effect at the level of trials. For the primary analysis, a random walk of first order was used to account for multiple follow-up outcome data within a trial. Preparations that used different total daily dose were considered separately in the analysis. To assess a potential dose-response relation, we used preparation-specific covariates assuming linearity on log relative dose. FINDINGS We identified 8973 manuscripts from our search, of which 74 randomised trials with a total of 58 556 patients were included in this analysis. 23 nodes concerning seven different NSAIDs or paracetamol with specific daily dose of administration or placebo were considered. All preparations, irrespective of dose, improved point estimates of pain symptoms when compared with placebo. For six interventions (diclofenac 150 mg/day, etoricoxib 30 mg/day, 60 mg/day, and 90 mg/day, and rofecoxib 25 mg/day and 50 mg/day), the probability that the difference to placebo is at or below a prespecified minimum clinically important effect for pain reduction (effect size [ES] -0·37) was at least 95%. Among maximally approved daily doses, diclofenac 150 mg/day (ES -0·57, 95% credibility interval [CrI] -0·69 to -0·46) and etoricoxib 60 mg/day (ES -0·58, -0·73 to -0·43) had the highest probability to be the best intervention, both with 100% probability to reach the minimum clinically important difference. Treatment effects increased as drug dose increased, but corresponding tests for a linear dose effect were significant only for celecoxib (p=0·030), diclofenac (p=0·031), and naproxen (p=0·026). We found no evidence that treatment effects varied over the duration of treatment. Model fit was good, and between-trial heterogeneity and inconsistency were low in all analyses. All trials were deemed to have a low risk of bias for blinding of patients. Effect estimates did not change in sensitivity analyses with two additional statistical models and accounting for methodological quality criteria in meta-regression analysis. INTERPRETATION On the basis of the available data, we see no role for single-agent paracetamol for the treatment of patients with osteoarthritis irrespective of dose. We provide sound evidence that diclofenac 150 mg/day is the most effective NSAID available at present, in terms of improving both pain and function. Nevertheless, in view of the safety profile of these drugs, physicians need to consider our results together with all known safety information when selecting the preparation and dose for individual patients. FUNDING Swiss National Science Foundation (grant number 405340-104762) and Arco Foundation, Switzerland.
Resumo:
Voltage-gated sodium channels (VGSCs) play an important role in neuronal excitability. Regulation of VGSC activity is a complex phenomenon that occurs at multiple levels in the cell, including transcriptional regulation, post-translational modification and membrane insertion and retrieval. Multiple VGSC subtypes exist that vary in their biophysical and pharmacological properties and tissue distribution. Any alteration of the VGSC subtype profile of a neuron or the mechanisms that regulate VGSC activity can cause significant changes in neuronal excitability. Inflammatory and neuropathic pain states are characterised by alterations in VGSC subtype composition and activity in sensory neurons. This review focuses on the VGSC subtypes involved in such pain states. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
The Overactive Bladder (OAB) and Bladder Pain Syndrome (BPS) are debilitating disorders for which the pathophysiological mechanisms are poorly understood. Injury or dysfunction of the protective urothelial barrier layer, specifically the proteoglycan composition and number, has been proposed as the primary pathological characteristic of BPS. For OAB, the myogenic theory with dysfunction of the muscarinic receptors is the most reiterated hypothesis. For both over activity of the inflammatory response has been posited to play a major role in these diseases. We hypothesise that BPS and OAB are peripheral sensory disorders, with an increase in inflammatory mediators, such as cytokines and chemokines, which are capable of activating, either directly or indirectly, sensory nerve activity causing the disease. The aim of the PhD is to identify potential new therapeutic targets for the treatment of BPS and OAB. We used medium throughput quantitative gene expression analysis of 96 inflammation associated mediators to measure gene expression levels in BPS and OAB bladder biopsies and compared them to control samples. Then we created a novel animal model of disease by specific proteoglycan deglycosylation of the bladder mucosal barrier, using the bacterial enzymes Chondroitinase ABC and Heparanase III. These enzymes specifically remove the glycosaminoglycan side chains from the urothelial proteoglycan molecules. We tested role of the identified mediators in this animal model. In addition, in order to determine on which patients peripheral treatment strategies may work, we assessed the effect of local anaesthetics on patients with bladder pain. Gene expression analysis did not reveal a difference in inflammatory genes in the OAB versus control biopsies. However, several genes were upregulated in BPS versus control samples, from which two genes, FGF7 and CLL21 were correlated with patient clinical phenotypes for ICS/PI symptom and problem indices respectively. In order to determine which patients are likely to respond to treatment, we sought to characterise the bladder pain in BPS patients. Using urodynamics and local anaesthetics, we differentiated patients with peripherally mediated pain and patients with central sensitisation of their pain. Finally to determine the role of these mediators in bladder pain, we created an animal model of disease, which specifically replicates the human pathology: namely disruption in the barrier proteoglycan molecules. CCL21 led to an increase in painrelated behaviour, while FGF7 attenuated this behaviour, as measured by cystometry, spinal c-fos expression and mechanical withdrawal threshold examination. In conclusion, we have identified CCL21 and FGF7 as potential targets for the treatment of BPS. Manipulation of these ligands or their receptors may prove to be valuable previously unexploited targets for the treatment of BPS.
Resumo:
Background and Purpose: A nonfunctioning inflammatory kidney is a challenging surgical condition for urologists. Some investigators recommend open surgery because of the surgical difficulties caused by the inflammatory process, whereas others try to apply the advantages of a ""simple"" non-hand-assisted laparoscopic approach. We report our experience with simple laparoscopic nephrectomy for inflammatory kidney management. Patients and Methods: From July 2002 through December 2006, 50 pure laparoscopic nephrectomies were performed for inflammatory kidney ( 43 because of pyelonephritis, 5 for xanthogranulomatous pyelonephritis (XGP), and 2 for pyonephrosis). Histopathologic analysis was the criterion used for inflammatory kidney diagnosis. Pain or recurrent urinary tract infection associated with a nonfunctioning excluded kidney was the eligibility criterion for the procedure. Preoperatively, all patients underwent complete image and functional renal assessment. Morcellation was used to remove surgical specimens. Conversion index, surgical difficulties, operative time, and postoperative complications were evaluated. Results: Conversion was performed in 14 of 50 (28%) patients, including two with XGP and one with pyonephrosis. Adhesions, vascular (two inferior vena cava) lesions, and intestinal lesions (two colon) were the main causes of conversion. Acute pancreatitis developed in one patient, and one patient had a wound infection. Reoperations were unnecessary, and no deaths occurred. Conclusion: Pure laparoscopic nephrectomy was successful in 72% of patients with inflammatory kidneys. The laparoscopic dissection was useful even in those cases converted to open surgery. This is a high-risk procedure, however, and both surgeon and patient must be aware of that before the decision is made for this approach.
Evaluation of Laser Phototherapy in the Inflammatory Process of the Rat's TMJ Induced by Carrageenan
Resumo:
Aim: The aim of this study was to evaluate, by light microscopy, the effects of laser phototherapy (LPT) at 780nm or a combination of 660 and 790 nm, on the inflammatory process of the rat temporomandibular joint (TMJ) induced by carrageen. Background: Temporomandibular disorders (TMDs) are frequent in the population and generally present an inflammatory component. Previous studies have evidenced positive effects of laser phototherapy on TMDs. However, its mechanism of action on the inflammation of the TMJ is not known yet. Materials and Methods: Eighty-five Wistar rats were divided into 9 groups: G1, Saline; G2, Saline + LPT IR; G3, Saline + LPT IR + R; G4, Carrageenan; G5, Carrageenan + LPT IR; G6, Carrageenan + LPT IR + R; G7, previous LPT + Carrageenan; G8, previous LPT + carrageenan + LPT IR; and G9, previous LPT + carrageenan + LPT IR + R, and then subdivided in subgroups of 3 and 7 days. After animal death, specimens were taken, routinely cut and stained with HE, Sirius Red, and Toluidine Blue. Descriptive analysis of components of the TMJ was done. The synovial cell layers were counted. Results: Injection of saline did not produced inflammatory reaction and the irradiated groups did not present differences compared to non-irradiated ones. After carrageenan injection, intense inflammatory infiltration and synovial cell layers proliferation were observed. The infrared irradiated group presented less inflammation and less synovial cell layers number compared to other groups. Previous laser irradiation did not improve the results. Conclusion: It was concluded that the LPT presented positive effects on inflammatory infiltration reduction and accelerated the inflammation process, mainly with IR laser irradiation. The number of synovial cell layers was reduced on irradiated group.
Resumo:
Salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their complexes [Zn(LASSBio-466) H(2)O](2) (1) and [Zn(HLASSBio-1064) Cl](2) (2) were evaluated in animal models of peripheral and central nociception, and acute inflammation. All studied compounds significantly inhibited acetic acid-induced writhing response. Upon coordination the anti-nociceptive activity was favored in the complex 1. H(2)LASSBio-466 inhibited only the first phase of the formalin test, while 1 was active in the second phase, like indomethacin, indicating its ability to inhibit nociception associated with the inflammatory response. Hence coordination to zinc(II) altered the pharmacological profile of H(2)LASSBio-466. H(2)LASSBio-1064 inhibited both phases but this effect was not improved by coordination. The studied compounds did not increase the latency of response in the hot plate model, indicating their lack of central anti-nociceptive activity. All compounds showed levels of inhibition of zymosan-induced peritonitis comparable or superior to indomethacin, indicating an expressive anti-inflammatory profile.
Resumo:
Arantes GM, Arantes VMN, Ashmawi HA, Posso IP To study the efficacy of tenoxicam for pain control, its potential for preemptive analgesia, and its influence on the orthodontic movement of upper canine teeth. This was a randomized controlled double-blind cross-over study. The patients were divided into three groups. Two groups received tenoxicam in daily doses of 20 mg orally for 3 days. Group A received the first dose of the drug before orthodontic activation and group B, just afterwards. Group C (control) received a placebo for 3 days. All groups had access to 750 mg of paracetamol up to four times a day. Three orthodontic activations were performed at 30-day intervals. Each patient belonged to two different groups. Pain intensity was assessed using a descriptive Pain Scale and a Visual Analog Scale. Private clinic; 36 patients undergoing bilateral canine tooth retraction. The statistical analysis did not show any difference in movement between the active groups and the control at any time. There was no statistical difference between the groups that received tenoxicam. Pain intensity in these groups was lower than in the placebo group. The difference in pain intensity between the active groups and the control was greatest at the assessment made 12 h after activation and it tended to zero, 72 h after activation. Tenoxicam did not influence orthodontic movement of the upper canines. It was effective for pain control and did not present any preemptive analgesic effect.
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases and is also implicated in inflammatory nociception. The use of lectins has been demonstrated to be effective in different activities including anti-inflammatory, antimicrobial, and in cancer therapy. In this study, we addressed the potential use of a lectin from Canavalia grandiflora seeds (ConGF) to control neutrophil migration and inflammatory hypernociception. Pretreatment of the animals intravenously (15 min before) with ConGF inhibited neutrophil migration to the peritoneal cavity in a dose-dependent fashion confirmed by an inhibition of rolling and adhesion of leukocytes by intravital microscopy. Another set of experiments showed that pretreatment of the animals with ConGF inhibited the mechanical hypernociception in mice induced by the i.pl. injection of carrageenan or formalin. This anti-nociceptive effect correlated with an effective blockade of neutrophil influx, as assessed by the hind paw tissue myeloperoxidase levels. Furthermore, ConGF had important inhibitory effects on the mouse carrageenan-induced paw edema. In addition, animals treated with ConGF showed inhibition of cytokines release. In conclusion, we demonstrated that the lectin ConGF inhibits neutrophil migration and mechanical inflammatory hypernociception.
Resumo:
Endothelins (ETs) are involved in inflammatory events, including pain, fever, edema, and cell migration. ET-1 levels are increased in plasma and synovial membrane of rheumatoid arthritis (RA) patients, but the evidence that ETs participate in RA physiopathology is limited. The present study investigated the involvement of ETs in neutrophil accumulation and edema formation in the murine model of zymosan-induced arthritis. Intra-articular (i.a.) administration of selective ETA or ETB receptor antagonists (BQ-123 and BQ-788, respectively; 15 pmol/cavity) prior to i.a. zymosan injection (500 mu g/cavity) markedly reduced knee-joint edema formation and neutrophil influx to the synovial cavity 6 h and 24 h after stimulation. Histological analysis showed that ETA or ETB receptor blockade suppressed zymosan-induced neutrophil accumulation in articular tissue at 6 h. Likewise, dual blockade of ETA/ETB with bosentan (10 mg/kg, i.v.) also reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF-alpha production within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene B-4 at both time-points. Consistent with the demonstration that ET receptor antagonists inhibit zymosan-induced inflammation, i.a. injection of ET-1 (1-30 pmol/cavity) or sarafotoxin S6c (0.1-30 pmol/cavity) also triggered edema formation and neutrophil accumulation within 6 h. Moreover, knee-joint synovial tissue expressed ETA and ETB receptors. These findings suggest that endogenous ETs contribute to knee-joint inflammation, acting through ETA and ETB receptors and modulating edema formation, neutrophil recruitment, and production of inflammatory mediators.
Resumo:
There are evidences that targeting IL-18 might be beneficial to inhibit inflammatory symptoms, including hypernociception (decrease in nociceptive threshold). The mechanism of IL-18 mechanical hypernociception depends on endothelin in rats and mice. However, the role of IL-18 in overt pain-like behaviour remains undetermined. Therefore, we addressed the role of IL-18 in writhing response induced by intraperitoneal (i.p.) injection of phenyl-p-benzoquinone (PBQ) and acetic acid in mice. Firstly, it was detected that PBQ and acetic acid i.p. injection induced a dose-dependent number of writhes in Balb/c mice. Subsequently, it was observed that the PBQ- but not the acetic acid-induced writhes were diminished in IL-18 deficient ((-/-)) mice. Therefore, considering that IFN-gamma, endothelin and prostanoids mediate IL-18-induced mechanical hypernociception, we also investigated the role of these mediators in the same model of writhing response in which IL-18 participates. It was noticed that PBQ-induced writhes were diminished in IFN-gamma(-/-) mice and by the treatment with bosentan (mixed enclothelin ETA/ETB receptor antagonist), BQ 123 (cyclo[DTrp-DAsp-Pro-DVal-Leu], selective enclothelin ETA receptor antagonist), BQ 788 (N-cys-2,6-dimethylpiperidinocarbonyl-L-methylleucyl-D-1 -methoxycarboyl-D-norleucine, selective endothelin ETB receptor antagonist) or indomethacin (cycloxigenase inhibitor). Thus, IL-18, IFN-gamma, endothelin acting on endothelin ETA and ETB receptors, and prostanoids mediate PBQ-induced writhing response in mice. To conclude, these results further advance the understanding of the physiopathology of overt pain-like behaviour, and suggest for the first time a role for IL-18 in writhing response in mice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.
Resumo:
Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.