966 resultados para IMPAIRS ENDOCYTOSIS
Resumo:
During the last decade, the discovery that astrocytes possess a nonelectrical form of excitability (Ca21-excitability) that leads to the release of chemical transmitters, an activity called ''gliotransmission'', indicates that these cells may have additional important roles in brain function. Elucidating the stimulus-secretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. Here by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the spatiotemporal characteristics of stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes. We performed the analysis at both the whole-cell and single-vesicle levels providing the first system for comparing exo-endocytic processes in astrocytes with those in neurons. Both the time course and modalities of secretion in astrocytes present more similarities to neurons then previously expected. We found that 1. the G-protein-coupled receptor (GPCR)-evoked exocytosis reached the maximum on a ms time scale and that 2. ER tubuli formed sub-micrometer domains beneath the plasma membrane in close proximity to exocytic vesicles, where fusion events were spatiotemporally correlated with fast Ca21 events.
Resumo:
OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.
Resumo:
BACKGROUND: Chronic hepatitis C infection is a major cause of end-stage liver disease. Therapy outcome is influenced by 25-OH vitamin D deficiency. To further address this observation, our study investigates the impact of the vitamin D receptor (NR1I1) haplotype and combined effects of plasma vitamin D levels in a well-described cohort of hepatitis C patients. METHODS: A total of 155 chronic hepatitis C patients were recruited from the Swiss Hepatitis C Cohort Study for NR1I1 genotyping and plasma 25-OH vitamin D level measurement. NR1I1 genotype data and combined effects of plasma 25-OH vitamin D level were analysed regarding therapy response (sustained virological response). RESULTS: A strong association was observed between therapy non-response and the NR1I1 CCA (bAt) haplotype consisting of rs1544410 (BsmI) C, rs7975232 (ApaI) C and rs731236 (TaqI) A alleles. Of the HCV patients carrying the CCA haplotype, 50.3% were non-responders (odds ratio [OR] 1.69, 95% CI 1.07, 2.67; P=0.028). A similar association was observed for the combinational CCCCAA genotype (OR 2.94, 95% CI 1.36, 6.37; P=0.007). The combinational CCCCAA genotype was confirmed as an independent risk factor for non-response in multivariate analysis (OR 2.50, 95% CI 1.07, 5.87; P=0.034). Analysing combined effects, a significant impact of low 25-OH vitamin D levels on sustained virological response were only seen in patients with the unfavourable NR1I1 CCA (bAt) haplotype (OR for non-SVR 3.55; 95% CI 1.005, 12.57; P=0.049). CONCLUSIONS: NR1I1 vitamin D receptor polymorphisms influence response to pegylated-interferon/ribavirin-based therapy in chronic hepatitis C and exert an additive genetic predisposition to previously described low 25-OH vitamin D serum levels.
Resumo:
BACKGROUND: Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks. MATERIALS AND METHODS: The expression pattern and functions of the class II PI3KC2β isoform were investigated in a panel of tumour samples and cell lines. RESULTS: Overexpression of PI3KC2β was found in subsets of tumours and cell lines from acute myeloid leukemia (AML), glioblastoma multiforme (GBM), medulloblastoma (MB), neuroblastoma (NB), and small cell lung cancer (SCLC). Specific pharmacological inhibitors of PI3KC2β or RNA interference impaired proliferation of a panel of human cancer cell lines and primary cultures. Inhibition of PI3KC2β also induced apoptosis and sensitised the cancer cells to chemotherapeutic agents. CONCLUSION: Together, these data show that PI3KC2β contributes to proliferation and survival in AML, brain tumours and neuroendocrine tumours, and may represent a novel target in these malignancies.
Resumo:
The discovery that astrocytes possess a nonelectrical form of excitability (calcium excitability) that leads to the release of chemical transmitters, an activity called gliotransmission, indicates that these cells may have additional important roles in brain function. Elucidating the stimulussecretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. We have recently discovered the existence in astrocytes of functional sub-membrane microdomains of calcium release from the internal stores in response to mGluR5 activation (Marchaland et al., J of Neurosci., 2008). Such sub-plasma membrane calcium microdomains control exocytosis of astrocytic glutamate signaling to neurons. Homer proteins are scaffold proteins controlling calcium signaling in different cellular microdomains, including dendritic spines in neurons (Sala et al., J of Neurosci., 2005). Thus, similarly to dendritic pines, Homer1 could be implicated in the coupling between astrocytic mGluR5 and IP3Rs on the ER. Here, by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the involvement of Homer1 proteins in the calcium dependent stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes.
Resumo:
Remorins (REMs) are proteins of unknown function specific to vascular plants. We have used imaging and biochemical approaches and in situ labeling to demonstrate that REM clusters at plasmodesmata and in approximately 70-nm membrane domains, similar to lipid rafts, in the cytosolic leaflet of the plasma membrane. From a manipulation of REM levels in transgenic tomato (Solanum lycopersicum) plants, we show that Potato virus X (PVX) movement is inversely related to REM accumulation. We show that REM can interact physically with the movement protein TRIPLE GENE BLOCK PROTEIN1 from PVX. Based on the localization of REM and its impact on virus macromolecular trafficking, we discuss the potential for lipid rafts to act as functional components in plasmodesmata and the plasma membrane.
Resumo:
Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.
Resumo:
An increased oxidative stress and alteration of the antioxidant systems have been observed in schizophrenia. Glutathione (GSH), a major redox regulator, is decreased in patients' cerebrospinal fluid, prefrontal cortex in vivo and striatum post-mortem tissue. Most importantly, there is genetic and functional evidence for the implication of the gene of the glutamate cysteine ligase (GCL) catalytic subunit, the key GSH-synthesizing enzyme. We have developed animal models for a GSH deficit to study the consequences of such deficit on the brain development. A GSH deficit combined with elevated dopamine (DA) during development leads to reduced parvalbumin (PV) expression in a subclass of GABA interneurons in rat anterior cingulate cortex (ACC). Similar changes are observed in postmortem brain tissue of schizophrenic patients. GSH dysregulation increases vulnerability to oxidative stress, that in turn could lead to cortical circuit anomalies in the schizophrenic brain. In the present study, we use a GCL modulatory subunit (GCLM) knock-out (KO) mouse model that presents up to 80% decreased brain GSH levels. During postnatal development, a subgroup of animals from each genotype is exposed to elevated oxidative stress induced by treatment with the DA reuptake inhibitor GBR12909. Results reveal a significant genotype-specific delay International Congress on Schizophrenia Research 136 10. 10. Neuroanatomy, Animal Downloaded from http://schizophreniabulletin.oxfordjournals.org at Bibliotheque Cantonale et Universitaire on June 18, 2010 in cortical PV expression at postnatal day P10 in GCLM-KO mice, as compared to wild-type. This effect seems to be further exaggerated in animals treated with GBR12909 from P5 to P10. At P20, PV expression is no longer significantly reduced in GCLM-KO ACC without GBR but is reduced if GBR is applied from P10 to P20. However, our result show that GCLM-KO mice exhibit increased oxidative stress, cortical altered myelin development as shown by MBP marker, and more specifically impairment of the peri-neuronal net known to modulate PV connectivity. In addition, we also observe a reduced PV expression in the ventro-temporal hippocampus of adult GCLM-KO mice, suggesting that anomalies of the PV interneurons prevail at least in some brain regions throughout the adulthood. Interestingly, the power of kainate-induced gamma oscillations, known to be dependent on proper activation of PV interneuron's, is also lower in hippocampal slices of adult GCLM KO mice. These results suggest that the PV positive GABA interneurons is particularly vulnerable to increased oxidative stress
Resumo:
Purpose/Objective: NLRs are intracellular proteins involved in sensing pathogen- and danger-associated molecular patterns, thereby initiating inflammatory responses or cell death. The function of the family member NLRC5 remains a matter of debate, particularly with respect to NF-jB activation, type I IFN, and MHC class I expression. Materials and methods: To study the function of this NLR in vivo, we generated Nlrc5-deficient mice. Results: We found that NLRC5 deletion led to a mild reduction in MHC class I expression on DCs and an intermediate decrease on B cells, while MHC class I levels were dramatically lowered on T, NKT, and NK cells. Nlrc5-/- lymphocytes showed decreased H-2 gene transcript abundance and, accordingly, NLRC5 was sufficient to drive MHC class I expression in a human lymphoid cell line. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Notably, cytotoxic T cell-mediated elimination of Nlrc5-/- lymphocytes was markedly reduced. In addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Conclusions: We found that NLRC5 acts as a key transcriptional regulator of MHC class I genes, in particular in lymphocytes. Loss of NLRC5 expression represents an advantage for evading CD8+ T cellmediated elimination by downmodulation of MHCI levels * a mechanism transformed cells may take advantage of. Therefore, our data support an essential role for NLRs in directing not only innate, but also adaptive immune responses (Staehli F et al. J Immunol 2012).
Resumo:
BACKGROUND: Regulatory T cells (Tregs) are key players in controlling the development of airway inflammation. However, their role in the mechanisms leading to tolerance in established allergic asthma is unclear. OBJECTIVE: To examine the role of Tregs in tolerance induction in a murine model of asthma. METHODS: Ovalbumin (OVA) sensitized asthmatic mice were depleted or not of CD25(+) T cells by anti-CD25 PC61 monoclonal antibody (mAb) before intranasal treatment (INT) with OVA, then challenged with OVA aerosol. To further evaluate the respective regulatory activity of CD4(+)CD25(+) and CD4(+)CD25(-) T cells, both T cell subsets were transferred from tolerized or non-tolerized animals to asthmatic recipients. Bronchoalveolar lavage fluid (BALF), T cell proliferation and cytokine secretion were examined. RESULTS: Intranasal treatment with OVA led to increased levels of IL-10, TGF-beta and IL-17 in lung homogenates, inhibition of eosinophil recruitment into the BALF and antigen specific T cell hyporesponsiveness. CD4(+)CD25(+)Foxp3(+) T cells were markedly upregulated in lungs and suppressed in vitro and in vivo OVA-specific T cell responses. Depletion of CD25(+) cells before OVA INT severely hampered tolerance induction as indicated by a strong recruitment of eosinophils into BALF and a vigorous T cell response to OVA upon challenge. However, the transfer of CD4(+)CD25(-) T cells not only suppressed antigen specific T cell responsiveness but also significantly reduced eosinophil recruitment as opposed to CD4(+)CD25(+) T cells. As compared with control mice, a significantly higher proportion of CD4(+)CD25(-) T cells from OVA treated mice expressed mTGF-beta. CONCLUSION: Both CD4(+)CD25(+) and CD4(+)CD25(-) T cells appear to be essential to tolerance induction. The relationship between both subsets and the mechanisms of their regulatory activity will have to be further analyzed.
Resumo:
The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)(+) germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1-PD-L1 interaction in regulating TFH cell function. In fact, we show that engagement of PD-1 on TFH cells leads to a reduction in cell proliferation, activation, inducible T-cell co-stimulator (ICOS) expression and interleukin-21 (IL-21) cytokine secretion. Blocking PD-1 signaling enhances HIV-specific immunoglobulin production in vitro. We further show that at least part of this defect involves IL-21, as addition of this cytokine rescues antibody responses and plasma cell generation in vitro. Our results suggest that deregulation of TFH cell-mediated B cell help diminishes B cell responses during HIV infection and may be related to PD-1 triggering on TFH cells. These results demonstrate a role for TFH cell impairment in HIV pathogenesis and suggest that enhancing their function could have a major impact on the outcome and control of HIV infection, preventing future infections and improving immune responses to vaccinations.
Resumo:
Using the yeast two-hybrid system, we identified the mu 2 subunit of the clathrin adaptor complex 2 as a protein interacting with the C-tail of the alpha 1b-adrenergic receptor (AR). Direct association between the alpha 1b-AR and mu 2 was demonstrated using a solid phase overlay assay. The alpha 1b-AR/mu 2 interaction occurred inside the cells, as shown by the finding that the transfected alpha 1b-AR and the endogenous mu 2 could be coimmunoprecipitated from HEK-293 cell extracts. Mutational analysis of the alpha 1b-AR revealed that the binding site for mu 2 does not involve canonical YXX Phi or dileucine motifs but a stretch of eight arginines on the receptor C-tail. The binding domain of mu 2 for the receptor C-tail involves both its N terminus and the subdomain B of its C-terminal portion. The alpha 1b-AR specifically interacted with mu 2, but not with the mu 1, mu 3, or mu 4 subunits belonging to other AP complexes. The deletion of the mu 2 binding site in the C-tail markedly decreased agonist-induced receptor internalization as demonstrated by confocal microscopy as well as by the results of a surface receptor biotinylation assay. The direct association of the adaptor complex 2 with a G protein-coupled receptor has not been reported so far and might represent a common mechanism underlying clathrin-mediated receptor endocytosis.
Resumo:
Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is an important component of the inflammasome, functioning as an adaptor protein that facilitates the recruitment and activation of procaspases that in turn promote the maturation of interleukin-1β (IL-1β) and IL-18. Despite initial focus on the inflammatory properties of ASC there is emerging evidence that highlights the importance of ASC in facilitating adaptive immune responses. However, the cellular and molecular basis for the involvement of ASC in adaptive immunity remains largely unexplored. We have previously demonstrated that activated ASC-deficient T cells have dampened proliferative responses. We have therefore explored the underlying cellular mechanism(s) by which ASC regulates T-cell proliferation. We show that under activating conditions (anti-CD3/CD28 stimulation) in bulk T-cell cultures the presence of ASC(-/-) CD4(+) T cells is sufficient to suppress the proliferative responses of neighbouring T cells. Furthermore, ASC(-/-) CD4(+) T cells upon activation exhibit a suppressive cytokine profile, with elevated production of IL-10 and reduced secretion of T helper type 1 cytokines, interferon-γ and IL-2. This increase in IL-10 secretion within the activated ASC(-/-) CD4(+) T-cell compartment was not associated with a proportional increase in conventional Foxp3(+) regulatory T (Treg) cells. Interestingly, when equal numbers of fluorescence-activated cell sorted ASC(+/+) and ASC(-/-) Treg cells (CD4(+) CD44(intermediate/high) CD25(+) ) were activated in vitro, the ASC(-/-) fraction produced significantly more IL-10 than their wild-type counterparts, suggesting that ASC(-/-) Treg cells have greater suppressive capacity. Collectively, these results imply that the ASC may influence the development and functioning of Treg cells.
Resumo:
Brain-derived neurotrophic factor (BDNF) polymorphism is associated with the pathophysiology of several neurodegenerative disorders, including Huntington"s disease. In view ofthese data andthe involvement of huntingtin in intracellular trafficking, we examined the intracellular transport and release of Val66Val BDNF (Val-BDNF) and Val66Met BDNF (Met-BDNF) in transfected striatal knock-in cells expressing wild-type or mutant full-length huntingtin. Colocalization studies with specific markers for endoplasmic reticulum showed no differences between the Val-BDNF and Met-BDNF and were not modified by mutant huntingtin. However, post-Golgi trafficking was altered by mutant huntingtin dependent on the BDNF form. Thus, fluorescence recovery after photobleaching (FRAP) and inverse FRAP analysis showed retention of Met-BDNF inthe Golgi apparatus with respectto Val-BDNF in wild-type cells. Strikingly, mutant huntingtin diminished post-Golgi trafficking of Val-BDNF, whereas Met-BDNF was not modified. Accordingly, a reduction in the number of transport vesicles was only observed in mutant huntingtin cells transfected with Val-BDNF but not Met-BDNF. Moreover, mutant huntingtin severely affectedthe KCl-evoked release of Val-BDNF, although it had little effect on Met-BDNF regulated release. The constitutive release of Val-BDNF or Met-BDNF in mutant cells was only slightly reduced. Interestingly, mutant huntingtin only perturbed post-Golgi trafficking of proteins that follow the regulated secretory pathway (epidermal growth factor receptor or atrial natriuretic factor), whereas it did not change those that follow the constitutive pathway (p75 NTR ). We conclude that mutant huntingtin differently affects intracellular transport and release of Val-BDNF and Met-BDNF. In addition, our findings reveal a new role for huntingtin in the regulation of the post-Golgi trafficking of the regulated secretory pathway.