933 resultados para Hydrostatic Tension
Resumo:
Benard-Marangoni convections of two-layer fluids heated from the bottom are investigated experimentally with a particle imagine velocimetry. The flows are visualized from the side, and various velocity fields near the onset of convection, such as three-layer vortex convective patterns, are observed when the depth ratio varies in a wide range. A new classification of the convective patterns is proposed with more detail than in previous studies. The analysis of the results indicates that the interface tension greatly influences the motion intensities of the bottom and top layers. The dimensionless wave number increases with the Bond number when the motion in the top layer is not more intense than that in the bottom layer, which agrees with the theoretical prediction.
Resumo:
Singular perturbation theory of two-time-scale expansions was developed in inviscid fluids to investigate patternforming, structure of the single surface standing wave, and its evolution with time in a circular cylindrical vessel subject to a vertical oscillation. A nonlinear slowly varying complex amplitude equation, which involves a cubic nonlinear term, an external excitation and the influence of surface tension, was derived from the potential flow equation. Surface tension was introduced by the boundary condition of the free surface in an ideal and incompressible fluid. The results show that when forced frequency is low, the effect of surface tension on the mode selection of surface waves is not important. However, when the forced frequency is high, the surface tension cannot be neglected. This manifests that the function of surface tension is to cause the free surface to return to its equilibrium configuration. In addition, the effect of surface tension seems to make the theoretical results much closer to experimental results.
Resumo:
The various patterns (shear banding, surface wrinkling and necking) of material bifurcation in plane sheet under tension are investigated in this paper by means of a numerical method. It is found that numerical analysis can provide better ground for searching for the lowest critical loads. The inhomogeneity caused by void damage and the nonuniformity in the stress distribution across sheet thickness are proved to have detrimental effects on the material bifurcation. Nevertheless, material stability can be promoted by any means of depressing void damage or alleviating stress, even locally across the thickness. Besides, the peculiar behaviour of material bifurcation under slight biaxiality state is demonstrated. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In this paper, the effect of the surface tension is considered carefully in the study of non-propagating solitary waves. The parameter plane of the surface tension and the fluid depth is divided into three regions; in two of them a breather soliton can be produced. In literature the parameters of breather solitons are all in one of the parameter regions. The new region reported here has been confirmed by our experiments. In the third region, the theoretical solution is a kink soliton, but a kind of the non-propagating solitary wave similar to the breather soliton was found in our experiments besides the kink soliton.
Resumo:
Similar results may apply to the large-scale configuration of the stellar field.
Resumo:
MELECON 2012 - 2012 16th IEEE Mediterranean Electrotechnical Conference, 25 Mar - 28 Mar 2012, Túnez
Resumo:
Tension Leg Platform (TLP) is a typical compliant offshore structure for oil exploitation in deep water. Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that displacements (translations and rotations) are small magnitude. Herein a theoretical method for analyzing the nonlinear dynamic behavior of TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e. finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Using this theoretical model, we perform the numerical analysis of dynamic response of a representative TLP. The comparison between the degenerative linear solution of the proposed nonlinear model and the published one shows good agreements. Furthermore, numerical results are presented which illustrate that nonlinearities exert a distinct influence on the dynamic responses of the TLP.
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.
Resumo:
Real time monitoring allows the determination of the line state and the calculation of the actual rating value. The real time monitoring systems measure sag, conductor tension, conductor temperature or weather related magnitudes. In this paper, a new ampacity monitoring system for overhead lines, based on the conductor tension, the ambient temperature, the solar radiation and the current intensity, is presented. The measurements are transmitted via GPRS to a control center where a software program calculates the ampacity value. The system takes into account the creep deformation experienced by the conductors during their lifetime and calibrates the tension-temperature reference and the maximum allowable temperature in order to obtain the ampacity. The system includes both hardware implementation and remote control software.
Resumo:
Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that motions (translations and rotations) are small magnitude. However, when TLP works in severe adverse conditions, the a priori assumption on small displacements may be inadequate. In such situation, the motions should be regarded as finite magnitude. This paper will study stochastic nonlinear dynamic responses of TLP with finite displacements in random waves. The nonlinearities considered are: large amplitude motions, coupling the six degrees-of-freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. The nonlinear dynamic responses are calculated by using numerical integration procedure in the time domain. After the time histories of the dynamic responses are obtained, we carry out cycle counting of the stress histories of the tethers with rain-flow counting method to get the stress range distribution.