994 resultados para Hydrogen storage


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports results from electrochemical evaluations of electrodes used as cathodes for a hydrogen evolution reaction and anodes in Ni-MH batteries that had been surface-modified by micro-encapsulation, co-deposition and sol-gel methods. The surface modifications produced actual improvements in the corresponding electrochemical reactions by enhancing the performance and/or the mechanical stability of the electrode material. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the literature, different approaches, terminologies, concepts and equations are used for calculating gas storage capacities. Very often, these approaches are not well defined, used and/or determined, giving rise to significant misconceptions. Even more, some of these approaches, very much associated with the type of adsorbent material used (e.g., porous carbons or new materials such as COFs and MOFs), impede a suitable comparison of their performances for gas storage applications. We review and present the set of equations used to assess the total storage capacity for which, contrarily to the absolute adsorption assessment, all its experimental variables can be determined experimentally without assumptions, ensuring the comparison of different porous storage materials for practical application. These material-based total storage capacities are calculated by taking into account the excess adsorption, the bulk density (ρbulk) and the true density (ρtrue) of the adsorbent. The impact of the material densities on the results are investigated for an exemplary hydrogen isotherm obtained at room temperature and up to 20 MPa. It turns out that the total storage capacity on a volumetric basis, which increases with both, ρbulk and ρtrue, is the most appropriate tool for comparing the performance of storage materials. However, the use of the total storage capacities on a gravimetric basis cannot be recommended, because low material bulk densities could lead to unrealistically high gravimetric values.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of hydrogen as an energy vector leads to the development of materials with high hydrogen adsorption capacity. In this work, a new layered stannosilicate, UZAR-S3, is synthesized and delaminated, producing UZAR-S4. UZAR-S3, with the empirical formula Na4SnSi5O14·3.5H2O and lamellar morphology, is a layered stannosilicate built from SnO6 and SiO4 polyhedra. The delamination process used here comprises three stages: protonation with acetic acid, swelling with nonylamine and the delamination itself with an HCl/H2O/ethanol solution. UZAR-S4 is composed of sheets a few nanometers thick with a high aspect ratio and a surface area of 236 m2/g, twenty times higher than that of UZAR-S3. At −196 °C for UZAR-S4, H2 adsorption reached remarkable values of 3.7 and 4.2 wt% for 10 and 40 bar, respectively, the latter value giving a high volumetric H2 storage capacity of 26.2 g of H2/L.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nitrogen substitution in carbon materials is investigated theoretically using the density functional theory method. Our calculations show that nitrogen substitution decreases the hydrogen adsorption energy if hydrogen atoms are adsorbed on both nitrogen atoms and the neighboring carbon atoms. On the contrary, the hydrogen adsorption energy can be increased if hydrogen atoms are adsorbed only on the neighboring carbon atoms. The reason can be explained by the electronic structures analysis of N-substituted graphene sheets. Nitrogen substitution reduces the pi electron conjugation and increases the HOMO energy of a graphene sheet, and the nitrogen atom is not stable due to its 3-valent character. This raises an interesting research topic on the optimization of the N-substitution degree, and is important to many applications such as hydrogen storage and the tokamaks device. The electronic structure studies also explain well why nitrogen substitution increases the capacitance but decreases the electron conductivity of carbon electrodes as was experimentally observed in our experiments on the supercapacitor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel carbon nanostructures can serve as effective storage media for methane, a source of clean energy for the future. We have used Grand Canonical Monte Carlo Simulation for the modeling of methane storage at 293 K and pressures up to 80 MPa in idealized bundles of (10,10) armchair-type single-walled carbon nanotubes and wormlike carbon pores. We have found that these carbon nanomaterials can be treated as the world's smallest high-capacity methane storage vessels. Our simulation results indicate that such novel carbon nanostructures can reach a high volumetric energy storage, exceeding the US FreedomCAR Partnership target of 2010 (5.4 MJ dm(-3)), at low to moderate pressures ranging from 1 to 7 MPa at 293 K. On the contrary, in the absence of these nanomaterials, methane needs to be compressed to approximately 13 MPa at 293 K to achieve the same target. The light carbon membranes composed of bundles of single-walled carbon nanotubes or wormlike pores efficiently physisorb methane at low to moderate pressures at 293 K, which we believe should be particularly important for automobiles and stationary devices. However, above 15-20 MPa at 293 K, all investigated samples of novel carbon nanomaterials are not as effective when compared with compression alone since the stored volumetric energy and power saturate at values below those of the bulk, compressed fluid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The storage of gases in porous adsorbents, such as activated carbon and carbon nanotubes, is examined here thermodynamically from a systems viewpoint, considering the entire adsorption-desorption cycle. The results provide concrete objective criteria to guide the search for the Holy Grail adsorbent, for which the adsorptive delivery is maximized. It is shown that, for ambient temperature storage of hydrogen and delivery between 30 and 1.5 bar pressure, for the optimum adsorbent the adsorption enthalpy change is 15.1 kJ/mol. For carbons, for which the average enthalpy change is typically 5.8 kJ/mol, an optimum operating temperature of about 115 K is predicted. For methane, an optimum enthalpy change of 18.8 kJ/mol is found, with the optimum temperature for carbons being 254 K. It is also demonstrated that for maximum delivery of the gas the optimum adsorbent must be homogeneous, and that introduction of heterogeneity, such as by ball milling, irradiation, and other means, can only provide small increases in physisorption-related delivery for hydrogen. For methane, heterogeneity is always detrimental, at any value of average adsorption enthalpy change. These results are confirmed with the help of experimental data from the literature, as well as extensive Monte Carlo simulations conducted here using slit pore models of activated carbons as well as atomistic models of carbon nanotubes. The simulations also demonstrate that carbon nanotubes offer little or no advantage over activated carbons in terms of enhanced delivery, when used as storage media for either hydrogen or methane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbons with slitlike pores can serve as effective host materials for storage of hythane fuel, a bridge between the petrol combustion and hydrogen fuel cells. We have used grand canonical Monte Carlo simulation for the modeling of the hydrogen and methane mixture storage at 293 K and pressure of methane and hydrogen mixture up to 2 MPa. We have found that these pores serve as efficient vessels for the storage of hythane fuel near ambient temperatures and low pressures. We find that, for carbons having optimized slitlike pores of size H congruent to 7 angstrom ( pore width that can accommodate one adsorbed methane layer), and bulk hydrogen mole fraction >= 0.9, the volumetric stored energy exceeds the 2010 target of 5.4 MJ dm(-3) established by the U. S. FreedomCAR Partnership. At the same condition, the content of hydrogen in slitlike carbon pores is congruent to 7% by energy. Thus, we have obtained the composition corresponding to hythane fuel in carbon nanospaces with greatly enhanced volumetric energy in comparison to the traditional compression method. We proposed the simple system with added extra container filled with pure free/adsorbed methane for adjusting the composition of the desorbed mixture as needed during delivery. Our simulation results indicate that light slit pore carbon nanomaterials with optimized parameters are suitable filling vessels for storage of hythane fuel. The proposed simple system consisting of main vessel with physisorbed hythane fuel, and an extra container filled with pure free/adsorbed methane will be particularly suitable for combustion of hythane fuel in buses and passenger cars near ambient temperatures and low pressures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fossil fuels constitute a significant fraction of the world's energy demand. The burning of fossil fuels emits huge amounts of carbon dioxide into the atmosphere. Therefore, the limited availability of fossil fuel resources and the environmental impact of their use require a change to alternative energy sources or carriers (such as hydrogen) in the foreseeable future. The development of methods to mitigate carbon dioxide emission into the atmosphere is equally important. Hence, extensive research has been carried out on the development of cost-effective technologies for carbon dioxide capture and techniques to establish hydrogen economy. Hydrogen is a clean energy fuel with a very high specific energy content of about 120MJ/kg and an energy density of 10Wh/kg. However, its potential is limited by the lack of environment-friendly production methods and a suitable storage medium. Conventional hydrogen production methods such as Steam-methane-reformation and Coal-gasification were modified by the inclusion of NaOH. The modified methods are thermodynamically more favorable and can be regarded as near-zero emission production routes. Further, suitable catalysts were employed to accelerate the proposed NaOH-assisted reactions and a relation between reaction yield and catalyst size has been established. A 1:1:1 molar mixture of LiAlH 4, NaNH2 and MgH2 were investigated as a potential hydrogen storage medium. The hydrogen desorption mechanism was explored using in-situ XRD and Raman Spectroscopy. Mesoporous metal oxides were assessed for CO2 capture at both power and non-power sectors. A 96.96% of mesoporous MgO (325 mesh size, surface area = 95.08 ± 1.5 m2/g) was converted to MgCO 3 at 350°C and 10 bars CO2. But the absorption capacity of 1h ball milled zinc oxide was low, 0.198 gCO2 /gZnO at 75°C and 10 bars CO2. Interestingly, 57% mass conversion of Fe and Fe 3O4 mixture to FeCO3 was observed at 200°C and 10 bars CO2. MgO, ZnO and Fe3O4 could be completely regenerated at 550°C, 250°C and 350°C respectively. Furthermore, the possible retrofit of MgO and a mixture of Fe and Fe3O 4 to a 300 MWe coal-fired power plant and iron making industry were also evaluated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l’environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l’énergie. L’objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d’examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l’hydrogène. Dans un premier temps, une série d’oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d’hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l’oxydation sélective du CO en CO2. Concernant la question du stockage d’hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d’hydrogène à partir de l’ammoniaborane (aussi appelé borazane). L’activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d’imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l’hydrolyse du borazane et la décomposition de l’hydrazine aqueuse pour la production d’hydrogène. Il a été démontré qu’un catalyseur optimal peut être obtenu par le contrôle de l’effet bi-métallique, l’interaction métal-support, et la taille des particules de métal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synergistic effect of metallic couple and carbon nanotubes on Mg results in an ultrafast kinetics of hydrogenation that overcome a critical barrier of practical use of Mg as hydrogen storage materials. The ultrafast kinetics is attributed to the metal−H atomic interaction at the Mg surface and in the bulk (energy for bonding and releasing) and atomic hydrogen diffusion along the grain boundaries (aggregation of carbon nanotubes) and inside the grains. Hence, a hydrogenation mechanism is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boron–nitrogen containing compounds with high hydrogen contents as represented by ammonia borane (NH3BH3) have recently attracted intense interest for potential hydrogen storage applications. One such compound is [(NH3)2BH2]B3H8 with a capacity of 18.2 wt% H. Two safe and efficient synthetic routes to [(NH3)2BH2]B3H8 have been developed for the first time since it was discovered 50 years ago. The new synthetic routes avoid a dangerous starting chemical, tetraborane (B4H10), and afford a high yield. Single crystal X-ray diffraction analysis reveals N–Hδ+Hδ−–B dihydrogen interactions in the [(NH3)2BH2]B3H8·18-crown-6 adduct. Extended strong dihydrogen bonds were observed in pure [(NH3)2BH2]B3H8 through crystal structure solution based upon powder X-ray analysis. Pyrolysis of [(NH3)2BH2]B3H8 leads to the formation of hydrogen gas together with appreciable amounts of volatile boranes below 160 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amonia borane (AB) has been identified as a potential candidate highcapacity hydrogen storage material. This work probes the adsorption and dissociation of AB inside and outside single-walled carbon nanotubes (SWCNTs) within the framework of density functional theory. The dissociation barriers of AB have been calculated and compared with that of the isolated AB molecule. On the basis of the present calculations, no notable improvement results from SWCNT confinement; on the contrary, the dissociation barrier slightly increases with respect to isolated AB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, ab initio spin-polarised Density Functional Theory (DFT) calculations are performed to study the interaction of a Ti atom with a NaAlH4(001) surface. We confirm that an interstitially located Ti atom in the NaAlH4 subsurface is the most energetically favoured configuration as recently reported (Chem. Comm. (17) 2006, 1822). On the NaAlH4(001) surface, the Ti atom is most stable when adsorbed between two sodium atoms with an AlH4 unit beneath. A Ti atom on top of an Al atom is also found to be an important structure at low temperatures. The diffusion of Ti from the Al-top site to the Na-bridging site has a low activation barrier of 0.20 eV and may be activated at the experimental temperatures (∼323 K). The diffusion of a Ti atom into the energetically favoured subsurface interstitial site occurs via the Na-bridging surface site and is essentially barrierless.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, ab initio density functional calculations were performed to explore the effect of surface lithium vacancies on the initial dehydrogenation kinetics of lithium borohydride. We found that some B−H bonds in neighboring BH4-1 complexes around the vacancy became elongated (weakened). The activation barriers for the recombination of H atoms to form H2 were decreased from 3.64 eV for the stoichiometrically complete LiBH4(010) surface to 1.53 and 0.23 eV in the presence of mono- and di-vacancies, respectively. Our results indicate that the creation of Li vacancies may play a critical role in accelerating the dehydrogenation kinetics of LiBH4.