1000 resultados para Hydrogen peroxyde
Resumo:
NaAlH4 and LiBH4 are potential candidate materials for mobile hydrogen storage applications, yet they have the drawback of being highly stable and desorbing hydrogen only at elevated temperatures. In this letter, ab initio density functional theory calculations reveal how the stabilities of the AlH4 and BH4 complex anions will be affected by reducing net anionic charge. Tetrahedral AlH4 and BH4 complexes are found to be distorted with the decrease of negative charge. One H-H distance becomes smaller and the charge density will overlap between them at a small anion charge. The activation energies to release of H2 from AlH4 and BH4 complexes are thus greatly decreased. We demonstrate that point defects such as neutral Na vacancies or substitution of a Na atom with Ti on the NaAlH4(001) surface can potentially cause strong distortion of neighboring AlH4 complexes and even induce spontaneous dehydrogenation. Our results help to rationalize the conjecture that the suppression of charge transfer to AlH4 and BH4 anion as a consequence of surface defects should be very effective for improving the recycling performance of H2 in NaAlH4 and LiBH4. The understanding gained here will aid in the rational design and development of hydrogen storage materials based on these two systems.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H2 molecules, respectively). Additionally, a molecular adsorption state of H2 above the Ti atom is observed for the first time and is attributed to the polarization of the H2 molecule by the Ti cation. Our results parallel recent findings for H2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.
Resumo:
Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.
Resumo:
The low index Magnesium hydride surfaces, MgH2(0 0 1) and MgH2(1 1 0), have been studied by ab intio Density Functional Theory (DFT) calculations. It was found that the MgH2(1 1 0) surface is more stable than MgH2(0 0 1) surface, which is in good agreement with the experimental observation. The H2 desorption barriers vary depending on the crystalline surfaces that are exposed and also the specific H atom sites involved – they are found to be generally high, due to the thermodynamic stability of the MgH2 system, and are larger for the MgH2(0 0 1) surface. The pathway for recombinative desorption of one in-plane and one bridging H atom from the MgH2(1 1 0) surface was found to be the lowest energy barrier amongst those computed (172 KJ/mol) and is in good agreement with the experimental estimates.
Resumo:
Ab initio Density Functional Theory (DFT) calculations are performed to study the diffusion of atomic hydrogen on a Mg(0001) surface and their migration into the subsurface layers. A carbon atom located initially on a Mg(0001) surface can migrate into the sub-surface layer and occupy a fcc site, with charge transfer to the C atom from neighboring Mg atoms. The cluster of postively charged Mg atoms surrounding a sub-surface C is then shown to facilitate the dissociative chemisorption of molecular hydrogen on the Mg(0001) surface, and the surface migration and subsequent diffusion into the subsurface of atomic hydrogen. This helps rationalize the experimentally-observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.
Resumo:
In this paper, the dissociative chemisorption of hydrogen on both pure and Ti-incorporated Mg(0001) surfaces are studied by ab initio density functional theory (DFT) calculations. The calculated dissociation barrier of hydrogen molecule on a pure Mg(0001) surface (1.05 eV) is in good agreement with comparable theoretical studies. For the Ti-incorporated Mg(0001) surface, the activated barrier decreases to 0.103 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Ti. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.
Resumo:
Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.
Resumo:
The structures of the anhydrous products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with (2-naphthoxy)acetic acid, the 1:1 adduct C8H6BrN3S . C12H10O3 (I) and 3,5-dinitrobenzoic acid, the salt C8H7BrN3S+ C7H3N2O6- (II) have been determined. In the adduct (I), a heterodimer is formed through a cyclic hydrogen-bonding motif [graph set R2/2(8)], involving carboxylic acid O-H...N(hetero)and amine N-H...O(carboxyl) interactions. The heterodimers are essentially planar with a thiadiazole to naphthyl ring dihedral angle of 15.9(2)deg. and the intramolecular thiadiazole to phenyl ring angle of 4.7(2)deg. An amine N-H...N(hetero) hydrogen bond between the heterodimers generates a one-dimensional chain structure extending down [001]. Also present are weak benzene-benzene and naphthalene-naphthalene pi-pi stacking interactions down the b axis [minimum ring centroid separation, 3.936(3) Ang.]. With the salt (II), the cation-anion association is also through a cyclic R2/2(8) motif but involving duplex N-H...O(carboxyl) hydrogen bonds, giving a heterodimer which is close to planar [dihedral angles between the thiadiazole ring and the two benzene rings, 5.00(16)deg. (intra) and 7.23(15)deg. (inter)]. A secondary centrosymmetric cyclic N-H...O(carboxyl) hydrogen-bonding association involving the second amino H-atom generates a heterotetramer. Also present in the crystal are weak pi-pi i-\p interactions between thiadiazolium rings [minimum ring centroid separation, 3.936(3)Ang.], as well as a short Br...O(nitro) interaction [3.314(4)Ang.]. The two structures reported here now provide a total of three crystallographically characterized examples of co-crystalline products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with carboxylic acids, of which only one involves proton-transfer.
Resumo:
It was demonstrated recently that dramatic changes in the redox behaviour of gold/aqueous solution interfaces may be observed following either cathodic or thermal electrode pretreatment. Further work on the cathodic pretreatment of gold in acid solution revealed that as the activity of the gold surface was increased, its performance as a substrate for hydrogen gas evolution under constant potential conditions deteriorated. The change in activity of the gold atoms at the interface, which was attributed to a hydrogen embrittlement process (the occurrence of the latter was subsequently checked by surface microscopy), was confirmed, as in earlier work, by the appearance of a substantial anodic peak at ca. 0.5 V (RHE) in a post-activation positive sweep. Changes in the catalytic activity of a metal surface reflect the fact that the structure (or topography), thermodynamic activity and electronic properties of a surface are dependent not only on pretreatment but also, in the case of the hydrogen evolution reaction, vary with time during the course of reaction. As will be reported shortly, similar (and often more dramatic) time-dependent behaviour was observed for hydrogen gas evolution on other metal electrodes.
Resumo:
A rapid electrochemical method based on using a clean hydrogen-bubble template to form a bimetallic porous honeycomb Cu/Pd structure has been investigated. The addition of palladium salt to a copper-plating bath under conditions of vigorous hydrogen evolution was found to influence the pore size and bulk concentration of copper and palladium in the honeycomb bimetallic structure. The surface was characterised by X-ray photoelectron spectroscopy, which revealed that the surface of honeycomb Cu/Pd was found to be rich with a Cu/Pd alloy. The inclusion of palladium in the bimetallic structure not only influenced the pore size, but also modified the dendritic nature of the internal wall structure of the parent copper material into small nanometre-sized crystallites. The chemical composition of the bimetallic structure and substantial morphology changes were found to significantly influence the surface-enhanced Raman spectroscopic response for immobilised rhodamine B and the hydrogen-evolution reaction. The ability to create free-standing films of this honeycomb material may also have many advantages in the areas of gas- and liquid-phase heterogeneous catalysis.
Resumo:
This paper reports on the study of the effect on adding total peripheries and sharp edges to the Schottky contact as a hydrogen sensor. Schottky contact was successfully designed and fabricated as hexagon-shape. The contact was integrated together with zinc oxide thin film and tested towards 1% hydrogen gas. Simulations of the design were conducted using COMSOL Multiphysics to observe the electric field characteristic at the contact layer. The simulation results show higher electric field induced at sharp edges with 4.18×104 V/m. Current-voltage characteristic shows 0.27 V voltage shift at 40 μA biased current.
Resumo:
There has been significant interest in developing metal oxide films with high surface area-to-volume ratio nanostructures particularly in substantially increasing the performance of Pt/oxide/semiconductor Schottky-diode gas sensors. While retaining the surface morphology of these devices, they can be further improved by modifying their nanostructured surface with a thin metal oxide layer. In this work, we analyse and compare the electrical and hydrogen-sensing properties of MoO3 nanoplatelets coated with a 4 nm layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We explain in our study, that the presence of numerous defect traps at the surface (and the bulk) of the thin high-� layer causes a substantial trapping of charge during hydrogen adsorption. As a result, the interface between the Pt electrode and the thin oxide layer becomes highly polarised. Measurement results also show that the nanoplatelets coated with Ta2O5 can enable the device to be more sensitive (a larger voltage shift under hydrogen exposure) than those coated with La2O3.
Resumo:
This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.
Resumo:
Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.