543 resultados para Hydrogel*


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture were greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of Candida albicans and Staphylococcus epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle (MN) arrays and skin barrier recovery in human volunteers. Such MN arrays, prepared from aqueous blends of hydrolyzed poly(methylvinylether/maleic anhydride) (15%, w/w) and the cross-linker poly(ethyleneglycol) 10,000 Da (7.5%, w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 μm by gentle hand pressure. The MN arrays swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 h in skin. Importantly, however, skin barrier function recovered within 24 h after MN removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required because transepidermal water loss measurements suggested micropore closure, whereas optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 h after MN had been removed. There were no complaints of skin reactions, adverse events, or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 h, and no adverse events were present on follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate, for the first time, the influence of pharmacist intervention and the use of a patient information leaflet on self-application of hydrogel-forming microneedle arrays by human volunteers without the aid of an applicator device.
Methods: A patient information leaflet was drafted and pharmacist counselling strategy devised. Twenty human volunteers applied 11 × 11 arrays of 400 μm hydrogel-forming microneedle arrays to their own skin following the instructions provided. Skin barrier function disruption was assessed using transepidermal water loss measurements and optical coherence tomography and results compared to those obtained when more experienced researchers applied the microneedles to the volunteers or themselves.
Results: Volunteer self-application of the 400 μm microneedle design resulted in an approximately 30% increase in skin transepidermal water loss, which was not significantly different from that seen with self-application by the more experienced researchers or application to the volunteers. Use of optical coherence tomography showed that self-application of microneedles of the same density (400 μm, 600 μm and 900 μm) led to percentage penetration depths of approximately 75%, 70% and 60%, respectively, though the diameter of the micropores created remained quite constant at approximately 200 μm. Transepidermal water loss progressively increased with increasing height of the applied microneedles and this data, like that for penetration depth, was consistent, regardless of applicant.
Conclusion: We have shown that hydrogel-forming microneedle arrays can be successfully and reproducibly applied by human volunteers given appropriate instruction. If these outcomes were able to be extrapolated to the general patient population, then use of bespoke MN applicator devices may not be necessary, thus possibly enhancing patient compliance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pharmaceutical Journal, 6 September 2014, Vol 293, No 7826, online | URI:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymeric hydrogel containing a photoinduced electron transfer (PET) based probe for Zn(ii) has been formulated into the wells of a 96-well plate. Upon addition of Zn(ii) ions to selected wells, the fluorescence of the gel was observed to increase in a concentration dependent manner in the 0.25-1.75 mM range. The millimolar binding constant observed for this probe is higher than that reported for other Zn(ii) probes in the literature and offers the possibility to determine the concentration of this ion in environments where the Zn(ii) concentration is high. The combination of the multi-well plate set-up with fluorescence detection offers the possibility of high-throughput screening using low sample volumes in a timely manner. To the best of our knowledge, this is the first reported example of a polymeric hydrogel sensor for zinc with capability for use in fluorescence multi-well plate assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of formulations and drug delivery strategies for paediatric use is challenging, partially due to the age ranges within this population, resulting in varying requirements to achieve optimised patient outcomes. Although the oral route of drug delivery remains the preferred option, there are problematic issues, such as difficulty swallowing and palatability of medicines specific to this population. The parenteral route is not well accepted by children due to needle-related fear and pain. Accordingly, a plethora of alternative routes of drug administration have been investigated. Microneedles (MN) breach the stratum corneum (SC), the outermost layer of skin, increasing the number of drug substances amenable to transdermal delivery. This strategy involves the use of micron-sized needles to painlessly, and without drawing blood, create transient aqueous conduits in the SC. In this study, polymeric dissolving MN and hydrogel-forming MN were fabricated incorporating two model drugs commonly used in paediatric patients (caffeine and lidocaine hydrochloride). The potential efficacy of these MN for paediatric dosing was investigated via in vitro and in vivo studies. Views pertaining to MN technology were sought amongst school children in Northern Ireland, members of the UK general public and UK-based paediatricians, to determine perceived benefits, acceptance, barriers and concerns for adoption of this technology. In this study, polymeric MN were shown to substantially enhance skin permeability of the model therapeutic molecules in vitro and in vivo. In particular, hydrogel-forming MN led to a 6.1-fold increase in caffeine delivery whilst lidocaine HCl delivery was increased by 3.3-fold using dissolving MN in vitro. Application of caffeine-loaded MN led to a caffeine plasma concentration of 23.87μg/mL in rats at 24h. This research also highlighted a strong consensus regarding MN technology amongst schoolchildren, paediatricians and the general public, regarding potential use of MN in the paediatric population. Overall, 93.6% of general public respondents and 85.9% of paediatricians regarded the use of MN as a positive approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%.