893 resultados para Hydrodynamic weather forecasting.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Initial results are presented from a middle atmosphere extension to a version of the European Centre For Medium Range Weather Forecasting tropospheric model. The extended version of the model has been developed as part of the UK Universities Global Atmospheric Modelling Project and extends from the ground to approximately 90 km. A comprehensive solar radiation scheme is included which uses monthly averaged climatological ozone values. A linearised infrared cooling scheme is employed. The basic climatology of the model is described; the parametrization of drag due to orographically forced gravity waves is shown to have a dramatic effect on the simulations of the winter hemisphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∥ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∥sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data assimilation (DA) systems are evolving to meet the demands of convection-permitting models in the field of weather forecasting. On 19 April 2013 a special interest group meeting of the Royal Meteorological Society brought together UK researchers looking at different aspects of the data assimilation problem at high resolution, from theory to applications, and researchers creating our future high resolution observational networks. The meeting was chaired by Dr Sarah Dance of the University of Reading and Dr Cristina Charlton-Perez from the MetOffice@Reading. The purpose of the meeting was to help define the current state of high resolution data assimilation in the UK. The workshop assembled three main types of scientists: observational network specialists, operational numerical weather prediction researchers and those developing the fundamental mathematical theory behind data assimilation and the underlying models. These three working areas are intrinsically linked; therefore, a holistic view must be taken when discussing the potential to make advances in high resolution data assimilation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is becoming increasingly important that we can understand and model flow processes in urban areas. Applications such as weather forecasting, air quality and sustainable urban development rely on accurate modelling of the interface between an urban surface and the atmosphere above. This review gives an overview of current understanding of turbulence generated by an urban surface up to a few building heights, the layer called the roughness sublayer (RSL). High quality datasets are also identified which can be used in the development of suitable parameterisations of the urban RSL. Datasets derived from physical and numerical modelling, and full-scale observations in urban areas now exist across a range of urban-type morphologies (e.g. street canyons, cubes, idealised and realistic building layouts). Results show that the urban RSL depth falls within 2 – 5 times mean building height and is not easily related to morphology. Systematic perturbations away from uniform layouts (e.g. varying building heights) have a significant impact on RSL structure and depth. Considerable fetch is required to develop an overlying inertial sublayer, where turbulence is more homogeneous, and some authors have suggested that the “patchiness” of urban areas may prevent inertial sublayers from developing at all. Turbulence statistics suggest similarities between vegetation and urban canopies but key differences are emerging. There is no consensus as to suitable scaling variables, e.g. friction velocity above canopy vs. square root of maximum Reynolds stress, mean vs. maximum building height. The review includes a summary of existing modelling practices and highlights research priorities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extent of the surface area sunlit is critical for radiative energy exchanges and therefore for a wide range of applications that require urban land surface models (ULSM), ranging from human comfort to weather forecasting. Here a computational demanding shadow casting algorithm is used to assess the capability of a simple single-layer urban canopy model, which assumes an infinitely long rotating canyon (ILC), to reproduce sunlit areas on roof and roads over central London. Results indicate that the sunlit roads areas are well-represented but somewhat smaller using an ILC, while sunlit roofs areas are consistently larger, especially for dense urban areas. The largest deviations from real world sunlit areas are found for roofs during mornings and evenings. Indications that sunlit fractions on walls are overestimated using an ILC during mornings and evenings are found. The implications of these errors are dependent on the application targeted. For example, (independent of albedo) ULSMs used in numerical weather prediction applying ILC representation of the urban form will overestimate outgoing shortwave radiation from roofs due to the overestimation of sunlit fraction of the roofs. Complications of deriving height to width ratios from real world data are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a fast and reliable method for redistributing a computational mesh in three dimensions which can generate a complex three dimensional mesh without any problems due to mesh tangling. The method relies on a three dimensional implementation of the parabolic Monge–Ampère (PMA) technique, for finding an optimally transported mesh. The method for implementing PMA is described in detail and applied to both static and dynamic mesh redistribution problems, studying both the convergence and the computational cost of the algorithm. The algorithm is applied to a series of problems of increasing complexity. In particular very regular meshes are generated to resolve real meteorological features (derived from a weather forecasting model covering the UK area) in grids with over 2×107 degrees of freedom. The PMA method computes these grids in times commensurate with those required for operational weather forecasting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The DYMECS project (Dynamical and Microphysical Evolution of Convective Storms) is taking a fundamentally new approach to evaluate and improve such models: rather than relying on a limited number of cases, which may not be representative, we have gathered a large database of 3D storm structures on 40 convective days using the Chilbolton radar in southern England. We have related these structures to storm life-cycles derived by tracking features in the rainfall from the UK radar network, and compared them statistically to storm structures in the Met Office model, which we ran at horizontal grid length between 1.5 km and 100 m, including simulations with different subgrid mixing length. We also evaluated the scale and intensity of convective updrafts using a new radar technique. We find that the horizontal size of simulated convective storms and the updrafts within them is much too large at 1.5-km resolution, such that the convective mass flux of individual updrafts can be too large by an order of magnitude. The scale of precipitation cores and updrafts decreases steadily with decreasing grid lengths, as does the typical storm lifetime. The 200-m grid-length simulation with standard mixing length performs best over all diagnostics, although a greater mixing length improves the representation of deep convective storms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ground-based remote-sensing observations from Atmospheric Radiation Measurement (ARM) and Cloud-Net sites are used to evaluate the clouds predicted by a weather forecasting and climate model. By evaluating the cloud predictions using separate measures for the errors in frequency of occurrence, amount when present, and timing, we provide a detailed assessment of the model performance, which is relevant to weather and climate time-scales. Importantly, this methodology will be of great use when attempting to develop a cloud parametrization scheme, as it provides a clearer picture of the current deficiencies in the predicted clouds. Using the Met Office Unified Model, it is shown that when cloud fractions produced by a diagnostic and a prognostic cloud scheme are compared, the prognostic cloud scheme shows improvements to the biases in frequency of occurrence of low, medium and high cloud and to the frequency distributions of cloud amount when cloud is present. The mean cloud profiles are generally improved, although it is shown that in some cases the diagnostic scheme produced misleadingly good mean profiles as a result of compensating errors in frequency of occurrence and amount when present. Some biases remain when using the prognostic scheme, notably the underprediction of mean ice cloud fraction due to the amount when present being too low, and the overprediction of mean liquid cloud fraction due to the frequency of occurrence being too high.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of meteorological records from four stations (Chittagong, Cox’s Bazar, Rangamati, Sitakunda) in south-eastern Bangladesh show coherent changes in climate over the past three decades. Mean maximum daily temperatures have increased between 1980 and 2013 by ca. 0.4 to 0.6°C per decade, with changes of comparable magnitude in individual seasons. The increase in mean maximum daily temperature is associated with decreased cloud cover and wind speed, particularly in the pre- and post-monsoon seasons. During these two seasons, the correlation between changes in maximum temperature and clouds is between -0.5 and -0.7; the correlation with wind speed is weaker although similar values are obtained in some seasons. Changes in mean daily minimum (and hence mean) temperature differ between the northern and southern part of the basin: northern stations show a decrease in mean daily minimum temperature during the post-monsoon season of between 0.2 and 0.5°C per decade while southern stations show an increase of ca. 0.1 to 0.4°C per decade during the pre-monsoon and monsoon seasons. In contrast to the significant changes in temperature, there is no trend in mean or total precipitation at any station. However, there is a significant increase in the number of rain days at the northern sites during the monsoon season, with an increase per decade of 3 days in Sitakunda and 7 days at Rangamati. These climate changes could have a significant impact on the hydrology of the Halda Basin, which supplies water to Chittagong and is the major pisciculture centre in Bangladesh.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observations from the Heliospheric Imager (HI) instruments aboard the twin STEREO spacecraft have enabled the compilation of several catalogues of coronal mass ejections (CMEs), each characterizing the propagation of CMEs through the inner heliosphere. Three such catalogues are the Rutherford Appleton Laboratory (RAL)-HI event list, the Solar Stormwatch CME catalogue, and, presented here, the J-tracker catalogue. Each catalogue uses a different method to characterize the location of CME fronts in the HI images: manual identification by an expert, the statistical reduction of the manual identifications of many citizen scientists, and an automated algorithm. We provide a quantitative comparison of the differences between these catalogues and techniques, using 51 CMEs common to each catalogue. The time-elongation profiles of these CME fronts are compared, as are the estimates of the CME kinematics derived from application of three widely used single-spacecraft-fitting techniques. The J-tracker and RAL-HI profiles are most similar, while the Solar Stormwatch profiles display a small systematic offset. Evidence is presented that these differences arise because the RAL-HI and J-tracker profiles follow the sunward edge of CME density enhancements, while Solar Stormwatch profiles track closer to the antisunward (leading) edge. We demonstrate that the method used to produce the time-elongation profile typically introduces more variability into the kinematic estimates than differences between the various single-spacecraft-fitting techniques. This has implications for the repeatability and robustness of these types of analyses, arguably especially so in the context of space weather forecasting, where it could make the results strongly dependent on the methods used by the forecaster.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extratropical transition (ET) has eluded objective identification since the realisation of its existence in the 1970s. Recent advances in numerical, computational models have provided data of higher resolution than previously available. In conjunction with this, an objective characterisation of the structure of a storm has now become widely accepted in the literature. Here we present a method of combining these two advances to provide an objective method for defining ET. The approach involves applying K-means clustering to isolate different life-cycle stages of cyclones and then analysing the progression through these stages. This methodology is then tested by applying it to five recent years from the European Centre of Medium-Range Weather Forecasting operational analyses. It is found that this method is able to determine the general characteristics for ET in the Northern Hemisphere. Between 2008 and 2012, 54% (±7, 32 of 59) of Northern Hemisphere tropical storms are estimated to undergo ET. There is great variability across basins and time of year. To fully capture all the instances of ET is necessary to introduce and characterise multiple pathways through transition. Only one of the three transition types needed has been previously well-studied. A brief description of the alternate types of transitions is given, along with illustrative storms, to assist with further study

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean prediction systems are now able to analyse and predict temperature, salinity and velocity structures within the ocean by assimilating measurements of the ocean’s temperature and salinity into physically based ocean models. Data assimilation combines current estimates of state variables, such as temperature and salinity, from a computational model with measurements of the ocean and atmosphere in order to improve forecasts and reduce uncertainty in the forecast accuracy. Data assimilation generally works well with ocean models away from the equator but has been found to induce vigorous and unrealistic overturning circulations near the equator. A pressure correction method was developed at the University of Reading and the Met Office to control these circulations using ideas from control theory and an understanding of equatorial dynamics. The method has been used for the last 10 years in seasonal forecasting and ocean prediction systems at the Met Office and European Center for Medium-range Weather Forecasting (ECMWF). It has been an important element in recent re-analyses of the ocean heat uptake that mitigates climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Friction plays a key role in causing slipperiness as a low coefficient of friction on the road may result in slippery and hazardous conditions. Analyzing the strong relation between friction and accident risk on winter roads is a difficult task. Many weather forecasting organizations use a variety of standard and bespoke methods to predict the coefficient of friction on roads. This article proposes an approach to predict the extent of slipperiness by building and testing an expert system. It estimates the coefficient of friction on winter roads in the province of Dalarna, Sweden using the prevailing weather conditions as a basis. Weather data from the road weather information system, Sweden (RWIS) was used. The focus of the project was to use the expert system as a part of a major project in VITSA, within the domain of intelligent transport systems

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Until mid 2006, SCIAMACHY data processors for the operational retrieval of nitrogen dioxide (NO2) column data were based on the historical version 2 of the GOME Data Processor (GDP). On top of known problems inherent to GDP 2, ground-based validations of SCIAMACHY NO2 data revealed issues specific to SCIAMACHY, like a large cloud-dependent offset occurring at Northern latitudes. In 2006, the GDOAS prototype algorithm of the improved GDP version 4 was transferred to the off-line SCIAMACHY Ground Processor (SGP) version 3.0. In parallel, the calibration of SCIAMACHY radiometric data was upgraded. Before operational switch-on of SGP 3.0 and public release of upgraded SCIAMACHY NO2 data, we have investigated the accuracy of the algorithm transfer: (a) by checking the consistency of SGP 3.0 with prototype algorithms; and (b) by comparing SGP 3.0 NO2 data with ground-based observations reported by the WMO/GAW NDACC network of UV-visible DOAS/SAOZ spectrometers. This delta-validation study concludes that SGP 3.0 is a significant improvement with respect to the previous processor IPF 5.04. For three particular SCIAMACHY states, the study reveals unexplained features in the slant columns and air mass factors, although the quantitative impact on SGP 3.0 vertical columns is not significant.