926 resultados para Human-cells


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide (NO) is an extremely important and versatile messenger in biological systems. It has been identified as a cytotoxic factor in the immune system, presenting anti- or pro-inflammatory properties under different circumstances. In murine monocytes and macrophages, stimuli by cytokines or lipopolysaccharide (LPS) are necessary for inducing the immunologic isoform of the enzyme responsible for the high-output production of NO, nitric oxide synthase (iNOS). With respect to human cells, however, LPS seems not to stimulate NO production in the same way. Addressing this issue, we demonstrate here that peripheral blood mononuclear cells (PBMC) obtained from schistosomiasis-infected patients and cultivated with parasite antigens in the in vitro granuloma (IVG) reaction produced more nitrite in the absence of LPS. Thus, LPS-induced nitrite levels are easily detectable, although lower than those detected only with antigenic stimulation. Concomitant addition of LPS and L-N-arginine methyl ester (L-NAME) restored the ability to produce detectable levels of nitrite, which had been lost with L-NAME treatment. In addition, LPS caused a mild decrease of the IVG reaction and its association with L-NAME was responsible for reversal of the L-NAME-exacerbating effect on the IVG reaction. These results show that LPS alone is not as good an NO inducer in human cells as it is in rodent cells or cell lines. Moreover, they provide evidence for interactions between LPS and NO inhibitors that require further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The malaria treatment recommended by the World Health Organization involves medicines derived from artemisinin, an active compound extracted from the plant Artemisia annua, and some of its derivatives, such as artesunate. Considering the lack of data regarding the genotoxic effects of these compounds in human cells, the objective of this study was to evaluate the cytotoxicity and genotoxicity, and expressions of the CASP3 and SOD1 genes in a cultured human hepatocellular liver carcinoma cell line (HepG2 cells) treated with artemisinin and artesunate. We tested concentrations of 2.5, 5, 7.5, 10, and 20 μg/mL of both substances with a resazurin cytotoxicity assay, and the concentrations used in the genotoxicity experiments (2.5, 5, and 10 μg/mL) and gene expression analysis (5 mg/mL) were determined. The results of the comet assay in cells treated with artemisinin and artesunate showed a significant dosedependent increase (P < 0.001) in the number of cells with DNA damage at all concentrations tested. However, the gene expression analysis revealed no significant change in expression of CASP3 or SOD1. Our data showed that although artemisinin and artesunate exhibited genotoxic effects in cultured HepG2 cells, they did not significantly alter expression of the CASP3 and SOD1 genes at the doses tested. ©FUNPEC-RP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30-50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)-a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% beta-tricalciumphosphate-only, and the right side (RS) with the CellCeram and htMSCs (10(6) cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcell-mediated chromosome transfer is a method of gene transfer which allows for the introduction of single or small groups of intact chromosomes into recipient host cells. Microcell transfer was first performed by Fournier and Ruddle using rodent microcells and various recipient cells. Expansion of this technology to include the transfer of normal human genetic material has been hindered because large micronucleate populations from diploid human cells have been unobtainable. This dissertation research describes, however, the methods for production of micronuclei in 40-60% of normal human fibroblasts. Once micronucleate cells were obtained, they were enucleated by centrifugation in the presence of Cytochalasin B; the microcells were then purified and fused to recipient mouse (LMTK('-)) cells using a new fusion protocol employing polyethylene glycol containing phytohemagglutinin. Microcell clones were isolated from the HAT selection system. Alkaline Giemsa staining performed on these hybrids indicated the presence of a single human chromosome in each of seven microcell clones from three separate experiments. That chromosome was further identified by G banding analysis to be human chromosome #17, which codes for thymidine kinase. The time course for production of these hybrids from fusion to karyotypic analysis was 6 weeks. The viability of the transferred human genetic material was assessed by electrophoretic isozyme analysis.^ Subsequent experiments were performed in an attempt to optimize the transfer frequency for the thymidine kinase gene using this system. Results indicated that the frequency could be increased from < 1 x 10('-6) in initial experiments to 2 x 10('-5) in the latest experiment. Analyses were also conducted to determine the number of chromosomes per isolated microcell as well as to investigate the stability of the transferred human chromosome in the mouse genome. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human hematopoiesis originates in a population of stem cells with transplantable lympho-myeloid reconstituting potential, but a method for quantitating such cells has not been available. We now describe a simple assay that meets this need. It is based on the ability of sublethally irradiated immunodeficient nonobese diabetic–scid/scid (NOD/SCID) mice to be engrafted by intravenously injected human hematopoietic cells and uses limiting dilution analysis to measure the frequency of human cells that produce both CD34−CD19+ (B-lymphoid) and CD34+ (myeloid) colony-forming cell progeny in the marrow of such recipients 6 to 8 weeks post-transplant. Human cord blood (CB) contains ≈5 of these competitive repopulating units (CRU) per ml that have a similar distribution between the CD38− and CD38+ subsets of CD34+ CB cells as long-term culture-initiating cells (LTC-IC) (4:1 vs. 2:1). Incubation of purified CD34+CD38− human CB cells in serum-free medium containing flt-3 ligand, Steel factor, interleukin 3, interleukin 6, and granulocyte colony-stimulating factor for 5–8 days resulted in a 100-fold expansion of colony-forming cells, a 4-fold expansion of LTC-IC, and a 2-fold (but significant, P < 0.02) increase in CRU. The culture-derived CRU, like the original CB CRU, generated pluripotent, erythroid, granulopoietic, megakaryopoietic, and pre-B cell progeny upon transplantation into NOD/SCID mice. These findings demonstrate an equivalent phenotypic heterogeneity amongst human CB cells detectable as CRU and LTC-IC. In addition, their similarly modest response to stimulation by a combination of cytokines that extensively amplify LTC-IC from normal adult marrow underscores the importance of ontogeny-dependent changes in human hematopoietic stem cell proliferation and self-renewal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesothelioma, a malignancy associated with asbestos, has been recently linked to simian virus 40 (SV40). We found that infection of human mesothelial cells by SV40 is very different from the semipermissive infection thought to be characteristic of human cells. Mesothelial cells are uniformly infected but not lysed by SV40, a mechanism related to p53, and undergo cell transformation at an extremely high rate. Exposure of mesothelial cells to asbestos complemented SV40 mutants in transformation. Our data provide a mechanistic explanation for the ability of SV40 to transform mesothelial cells preferentially and indicate that asbestos and SV40 may be cocarcinogens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Applied molecular evolution is a rapidly developing technology that can be used to create and identify novel enzymes that nature has not selected. An important application of this technology is the creation of highly drug-resistant enzymes for cancer gene therapy. Seventeen O6-alkylguanine-DNA alkyltransferase (AGT) mutants highly resistant to O6-benzylguanine (BG) were identified previously by screening 8 million variants, using genetic complementation in Escherichia coli. To examine the potential of these mutants for use in humans, the sublibrary of AGT clones was introduced to human hematopoietic cells and stringently selected for resistance to killing by the combination of BG and 1,3-bis(2-chloroethyl)-1-nitrosourea. This competitive analysis between the mutants in human cells revealed three AGT mutants that conferred remarkable resistance to the combination of BG and 1,3-bis(2-chloroethyl)-1-nitrosourea. Of these, one was recovered significantly more frequently than the others. Upon further analysis, this mutant displayed a level of BG resistance in human hematopoietic cells greater than that of any previously reported mutant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although enzymatic photoreactivation of cyclobutyl pyrimidine dimers in DNA is present in almost all organisms, its presence in placental mammals is controversial. We tested human white blood cells for photolyase by using three defined DNAs (supercoiled pET-2, nonsupercoiled bacteriophage lambda, and a defined-sequence 287-bp oligonucleotide), two dimer-specific endonucleases (T4 endonuclease V and UV endonuclease from Micrococcus luteus), and three assay methods. We show that human white blood cells contain photolyase that can photorepair pyrimidine dimers in defined supercoiled and linear DNAs and in a 287-bp oligonucleotide and that human photolyase is active on genomic DNA in intact human cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We explored the feasibility of designing retroviral vectors that can target human breast cancer cells with characteristic receptors via ligand-receptor interaction. The ecotropic Moloney murine leukemia virus envelope was modified by insertion of sequences encoding human heregulin. Ecotropic virus, which normally does not infect human cells, when pseudotyped with the modified envelope protein now crosses species to infect human breast cancer cell lines that overexpress HER-2 (human epidermal growth factor receptor; also called ERBB2) and HER-4 (also called ERBB4), while human breast cancer cell lines expressing low levels of these receptors remain resistant to infection. Since about 20% of human breast cancers overexpress HER-2 and some of breast cancer cell lines overexpress both HER-2 and HER-4, cell-specific targeting of retroviral vectors may provide a different approach for in vivo gene therapy of this type of breast cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Treacher Collins syndrome (TCS) is an autosomal dominant craniofacial disorder caused by frameshift deletions or duplications in the TCOF1 gene. These mutations cause premature termination codons, which are predicted to lead to mRNA degradation by nonsense mediated mRNA decay (NMD). Haploinsufficiency of the gene product (treacle) during embryonic development is the proposed molecular mechanism underlying TCS. However, it is still unknown if TCOF1 expression levels are decreased in postembryonic human cells. Methods: We have estimated TCOF1 transcript levels through real time PCR in mRNA obtained from leucocytes and mesenchymal cells of TCS patients (n = 23) and controls (n = 18). Mutational screening and analysis of NMD were performed by direct sequencing of gDNA and cDNA, respectively. Results: All the 23 patients had typical clinical features of the syndrome and pathogenic mutations were detected in 19 of them. We demonstrated that the expression level of TCOF1 is 18-31% lower in patients than in controls (p < 0.05), even if we exclude the patients in whom we did not detect the pathogenic mutation. We also observed that the mutant allele is usually less abundant than the wild type one in mesenchymal cells. Conclusions: This is the first study to report decreased expression levels of TCOF1 in TCS adult human cells, but it is still unknown if this finding is associated to any phenotype in adulthood. In addition, as we demonstrated that alleles harboring the pathogenic mutations have lower expression, we herein corroborate the current hypothesis of NMD of the mutant transcript as the explanation for diminished levels of TCOF1 expression. Further, considering that TCOF1 deficiency in adult cells could be associated to pathologic clinical findings, it will be important to verify if TCS patients have an impairment in adult stem cell properties, as this can reduce the efficiency of plastic surgery results during rehabilitation of these patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: Statin disposition and response are greatly determined by the activities of drug metabolizing enzymes and efflux/uptake transporters. there is little information on the regulation of these proteins in human cells after statin therapy. In this study, the effects of atorvastatin and simvastatin on mRNA expression of efflux (ABCB1, ABCG2 and ABCC2) and uptake (SLCO1B1, SLCO2B1 and SLC22A1) drug transporters in Caco-2 and HepG2 cells were investigated. Methods: Quantitative real-time PCR was used to measure mRNA levels after exposure of HepG2 and Caco-2 cells to statins. Results: Differences in mRnA basal levels of the transporters were as follows: ABCC2>ABCG2>ABCB1>SLCO1B1>>>SLC22A1>SLC O2B1 for HepG2 cells, and SLCO2B1>>ABCC2>ABCB1>ABCG2>>>SLC22A1 for Caco-2 cells. While for HepG2 cells, ABCC2, ABCG2 and SLCO2B1 mRnA levels were significantly up-regulated at 1, 10 and 20 mu mol/L after 12 or 24 h treatment, in Caco-2 cells, only the efflux transporter ABCB1 was significantly down-regulated by two-fold following a 12 h treatment with atorvastatin. Interestingly, whereas treatment with simvastatin had no effect on mRNA levels of the transporters in HepG2 cells, in Caco-2 cells the statin significantly down-regulated ABCB1, ABCC2, SLC22A1, and SLCO2B1 mRnA levels after 12 or 24 h treatment. Conclusion: These findings reveal that statins exhibits differential effects on mRNA expression of drug transporters, and this effect depends on the cell type. Furthermore, alterations in the expression levels of drug transporters in the liver and/or intestine may contribute to the variability in oral disposition of statins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glucocorticoid excess causes visceral obesity and its accompanying insulin resistance, dyslipidemia and hypertension. Glucocorticoids enhance preadipocyte (PA) differentiation and increase their aromatase activity (oestrogen production) and there is regional variability in these PA processes. Therefore, we studied human PAs for the presence of, and any regional or gender differences in, glucocorticoid receptors (GRs). Confluent subcultured human subcutaneous (Sc) and visceral (Vis) PAs from both genders contained GRs as assessed by GR gene expression and specific glucocorticoid (dexamethasone) binding. The dissociation constant was similar to that of other human cells and there was no difference between Sc and Vis sites or between males and females. There was significantly less GR mRNA in Vis PAs compared with Sc PAs in females (P=0.008) but not in males. There was less glucocorticoid binding in Vis compared with Sc PAs in females, measured by maximal binding capacity (P=0.035) or single saturating dose glucocorticoid binding (Bssd) (P=0.019). There was no regional difference in specific glucocorticoid binding in males. There was a gender difference with fewer GRs in Vis PAs in females compared with males measured by Bssd (P=0.006). In summary, GRs are present in human PAs. There is a lower GR density in Vis compared with Sc PAs in females, and females have fewer GRs in Vis PAs compared with males. These differences are likely to affect regional aromatase activity and to contribute to the smaller visceral fat mass in females compared with males.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell surface proteins are excellent targets for diagnostic and therapeutic interventions. By using bioinformatics tools, we generated a catalog of 3,702 transmembrane proteins located at the surface of human cells (human cell surfaceome). We explored the genetic diversity of the human cell surfaceome at different levels, including the distribution of polymorphisms, conservation among eukaryotic species, and patterns of gene expression. By integrating expression information from a variety of sources, we were able to identify surfaceome genes with a restricted expression in normal tissues and/or differential expression in tumors, important characteristics for putative tumor targets. A high-throughput and efficient quantitative real-time PCR approach was used to validate 593 surfaceome genes selected on the basis of their expression pattern in normal and tumor samples. A number of candidates were identified as potential diagnostic and therapeutic targets for colorectal tumors and glioblastoma. Several candidate genes were also identified as coding for cell surface cancer/testis antigens. The human cell surfaceome will serve as a reference for further studies aimed at characterizing tumor targets at the surface of human cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cytoplasmic and nuclear protein Ki- 1 / 57 was first identified in malignant cells from Hodgkin`s lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki- 1 / 57 in human cells remains to be determined. Here, we investigated the relationship of Ki- 1 / 57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki- 1 / 57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki- 1 / 57 was able to bind to a poly- U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki- 1 / 57 can modify the splicing site selection of the adenoviral E1A minigene in a dose- dependent manner. Further confocal and. uorescence microscopy analysis revealed the localization of enhanced green. uorescent protein - Ki- 1 / 57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N- terminal region. In summary, our findings suggest that Ki- 1 / 57 is probably involved in cellular events related to RNA functions, such as pre- mRNA splicing.