925 resultados para Highway maintenance.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Supplements accompany some volumes.
Resumo:
"March 2005."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Interim report, issued July 1977.
Resumo:
Mode of access: Internet.
Resumo:
Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.
Resumo:
Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.
Resumo:
The sixth in a series, this bulletin further compiles the reports on completed research done for the Iowa State Highway Research Board under its Project HR-1, The loess and glacial till materials of Iowa; an investigation of their physical and chemical properties and techniques for processing them to increase their all-weather stability for road construction. The research, started in 1950, has been conducted by the Iowa Engineering Experiment Station at Iowa State University under its Project 283-S.
Resumo:
X-ray diffraction data during adsorption of water vapor on Na- and Ca-montmorillonites show that interlayer expansion is continuous but nonuniform. X-ray and adsorption isotherm data indicate an ice-like configuration of water molecules is completed with the fourth layer of interlayer water for the Ca-clay; a fifth layer intrudes to give a less ordered structure. Data for the Na-clay indicate a laminar stacking arrangement for up to three layers of interlayer water. The Na-clay adsorbs more than twice as much water and undergoes four times as large a volume change than the Ca-clay. The free energy change during adsorption of water vapor on the Ca-clay is nearly twice that for the Na-clay. Free energy changes with increasing relative pressure reflect interlayer expansion increments.
Resumo:
The overall objective of this experimental program was to obtain quantitative comparisons between leaded and nonleaded gasolines as used in a variety of Iowa State Highway Connnission vehicles. These quantitative comparisons were to be made in terms of exhaust emissions, maintenance costs and fuel economy.
Resumo:
(a) Iowa has a total of 101,620 miles of rural roads, both primary and secondary. (b) On January 1, 1951, a total of 68,869 miles of these rural roads were surfaced - mostly with gravel and crushed stone. (c) Additional roads are being surfaced at the rate of 2676 miles per year. (d) Iowa's highway program provides for a surfaced road to every reasonably located rural home and a paved or other type of dustless surface on all primary roads. (e) Iowa's highway funds come 26.0 per cent from property taxes, 63.5 per cent from road use taxes, 10.5 per cent from Federal aid. (f) Annual income under present laws, available for highway construction, is approximately For primary roads ----------------- $24,000,000 For secondary roads---------------- $41,967,000 (g) Iowa's highway improvements are being paid for as built. No new bonds are being issued. (h) Unobligated available farm to market road funds are rapidly being placed under contract. (i) The letting of highway contracts is increasing rapidly. (j)- Iowa's highway program is estimated to cost $945,000,000 and will require twenty years to build. These are the highlights of Iowa's highway program. The details will follow in succeeding paragraphs.
Resumo:
(a) Iowa has a total of 101,620 miles of rural roads, both primary and secondary. (b) On January 1, 1952, a total of 71,493 miles of these rural roads were surfaced - mostly with gravel and crushed stone. (c) Additional roads are being surfaced at the rate of 2662 miles per year. (d) Iowa's highway program provides for a surfaced road to every reasonably located rural home and a paved or other type of dustless surface on all primary roads. (e) Iowa's highway funds come 26.0 per cent from property taxes, 63.5 per cent from road use taxes, 10.5 per cent from Federal aid. (f) Annual income under present laws, available for highway construction, is approximately For primary roads------------------$23,000,000 For secondary roads---------------- 41,967,000 (g) Iowa's highway improvements are being paid for as built. No new bonds are being issued. (h) The surplus of farm to market road funds created during and immediately following the War have now been placed under contract, with only a minimum working balance remaining in the fund. (i) Iowa's highway program was estimated to cost $945,000,000 and to require twenty years to build, by the 1948 Legislative Committee. This estimate would now have to be increased due to price increases and higher required standards. These are the highlights of Iowa's highway program. The details will follow in succeeding paragraphs.
Resumo:
(a) Iowa has a total of 101,451 miles of rural roads, both primary and secondary. (b) On January 1, l954, a total of 77,024 miles of these rural roads were surfaced - mostly with gravel and crushed stone. This is 5,53l miles greater than on January l, 1952. (c) Additional roads are being surfaced at the rate of 2766 miles per year. (d) Iowa's highway program provides for a surfaced road to every reasonably located rural home and a paved or other type of dustless surface on all primary roads. (e) Iowa's highway funds come 25.4 per cent from property taxes and special taxes......................................$29,708,546.67 63.7 per cent from road use taxes.......... 74,581,080.30 10.6 per cent from Federal Aid (1952 Act).. 12,424,000.00 0.3 per cent from miscellaneous receipts.. 287,922.86 ---- ------------- 100.0 $117,001,549.83 (f) Annual income under present laws, available for highway construction, is approximately, For primary roads $29,420,000.00 For secondary roads $44,328,000.00 In 19_3, $7,299,000 of secondary road construction funds was transferred to the maintenance fund. (g) Iowa's highway improvements are being paid for as built. No new bonds are being issued.