957 resultados para High-affinity binding
Resumo:
Patients with cystic fibrosis (CF; N = 26) and with no prior history of infection with Pseudomonas aeruginosa were immunized with an octavalent O-polysaccharide-toxin A conjugate vaccine. During the next 4 years, 16 patients (61.5%) remained free of infection and 10 (38.5%) became infected. Total serum antilipopolysaccharide (LPS) antibody levels induced by immunization were comparable in infected and noninfected patients. In contrast, 12 of 16 noninfected versus 3 of 10 infected patients (p = 0.024) mounted and maintained a high-affinity anti-LPS antibody response. When compared retrospectively with the rate in a group of age- and gender-matched, nonimmunized, noncolonized patients with CF, the rate at which P. aeruginosa infections were acquired was significantly lower (p < or = 0.02) among all immunized versus nonimmunized patients during the first 2 years of observation. Subsequently, only those immunized patients who maintained a high-affinity anti-LPS antibody response had a significant reduction (p < or = 0.014) in the rate of infection during years 3 and 4. Smooth, typeable strains of P. aeruginosa predominated among immunized patients; rough, nontypeable strains were most frequently isolated from nonimmunized patients. Mucoid variants were isolated from one immunized patient versus six nonimmunized patients. These results indicate that the induction of a high-affinity P. aeruginosa anti-LPS antibody response can influence the rate of infection in patients with CF.
Resumo:
Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.
Resumo:
An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhancement of the siphon-withdrawal reflex, or long-term synaptic facilitation increased Glu uptake. Moreover, 5-hydroxytryptamine, a treatment that induces long-term facilitation, also produced a long-term increase in Glu uptake in cultures of sensory neurons. The mechanism for the increase in uptake is an increase in the V(max) of transport. The long-term increase in Glu uptake appeared to be dependent on mRNA and protein synthesis, and transport through the Golgi, because 5,6-dichlorobenzimidazole riboside, emetine, and brefeldin A inhibited the increase in Glu uptake. Also, injection of emetine and 5,6-dichlorobenzimidazole into Aplysia prevented long-term sensitization. Synthesis of Glu itself may be regulated during long-term sensitization because the same treatments that produced an increase in Glu uptake also produced a parallel increase in Gln uptake. These results suggest that coordinated regulation of a number of different processes may be required to establish or maintain long-term synaptic facilitation.
Resumo:
Arabidopsis amino acid transporters (AAPs) show individual temporal and spatial expression patterns. A new amino acid transporter, AAP8 was isolated by reverse transcription-PCR. Growth and transport assays in comparison to AAP1-5 characterize AAP8 and AAP6 as high affinity amino acid transport systems from Arabidopsis. Histochemical promoter-beta-glucuronidase (GUS) studies identified AAP6 expression in xylem parenchyma, cells requiring high affinity transport due to the low amino acid concentration in xylem sap. AAP6 may thus function in uptake of amino acids from xylem. Histochemical analysis of AAP8 revealed stage-dependent expression in siliques and developing seeds. Thus AAP8 is probably responsible for import of organic nitrogen into developing seeds. The only missing transporter of the family AAP7 was nonfunctional in yeast with respect to amino acid transport, and expression was not detectable. Therefore, AAP6 and -8 are the only members of the family able to transport aspartate with physiologically relevant affinity. AAP1, -6 and -8 are the closest AAP paralogs. Although AAP1 and AAP8 originate from a duplicated region on chromosome I, biochemical properties and expression pattern diverged. Overlapping substrate specificities paired with individual properties and expression patterns point to specific functions of each of the AAP genes in nitrogen distribution rather than to mere redundancy.
Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays
Resumo:
Background: Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. Results: Kinetic characterization of urea uptake (<300 mu M) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. Conclusions: This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.
Resumo:
In many organisms, including plants, nucleic acid bases and derivatives such as caffeine are transported across the plasma membrane. Cytokinins, important hormones structurally related to adenine, are produced mainly in root apices, from where they are translocated to shoots to control a multitude of physiological processes. Complementation of a yeast mutant deficient in adenine uptake (fcy2) with an Arabidopsis cDNA expression library enabled the identification of a gene, AtPUP1 (for Arabidopsis thaliana purine permease1), belonging to a large gene family (AtPUP1 to AtPUP15) encoding a new class of small, integral membrane proteins. AtPUP1 transports adenine and cytosine with high affinity. Uptake is energy dependent, occurs against a concentration gradient, and is sensitive to protonophores, potentially indicating secondary active transport. Competition studies show that purine derivatives (e.g., hypoxanthine), phytohormones (e.g., zeatin and kinetin), and alkaloids (e.g., caffeine) are potent inhibitors of adenine and cytosine uptake. Inhibition by cytokinins is competitive (competitive inhibition constant Ki = 20 to 35 μM), indicating that cytokinins are transported by this system. AtPUP1 is expressed in all organs except roots, indicating that the gene encodes an uptake system for root-derived nucleic acid base derivatives in shoots or that it exports nucleic acid base analogs from shoots by way of the phloem. The other family members may have different affinities for nucleic acid bases, perhaps functioning as transporters for nucleosides, nucleotides, and their derivatives.
Resumo:
Recent reports have demonstrated beneficial effects of proinsulin C-peptide in the diabetic state, including improvements of kidney and nerve function. To examine the background to these effects, C-peptide binding to cell membranes has been studied by using fluorescence correlation spectroscopy. Measurements of ligand–membrane interactions at single-molecule detection sensitivity in 0.2-fl confocal volume elements show specific binding of fluorescently labeled C-peptide to several human cell types. Full saturation of the C-peptide binding to the cell surface is obtained at low nanomolar concentrations. Scatchard analysis of binding to renal tubular cells indicates the existence of a high-affinity binding process with Kass > 3.3 × 109 M−1. Addition of excess unlabeled C-peptide is accompanied by competitive displacement, yielding a dissociation rate constant of 4.5 × 10−4 s−1. The C-terminal pentapeptide also displaces C-peptide bound to cell membranes, indicating that the binding occurs at this segment of the ligand. Nonnative d-C-peptide and a randomly scrambled C-peptide do not compete for binding with the labeled C-peptide, nor were crossreactions observed with insulin, insulin-like growth factor (IGF)-I, IGF-II, or proinsulin. Pretreatment of cells with pertussis toxin, known to modify receptor-coupled G proteins, abolishes the binding. It is concluded that C-peptide binds to specific G protein-coupled receptors on human cell membranes, thus providing a molecular basis for its biological effects.
Resumo:
Ribosome display was applied for affinity selection of antibody single-chain fragments (scFv) from a diverse library generated from mice immunized with a variant peptide of the transcription factor GCN4 dimerization domain. After three rounds of ribosome display, positive scFvs were isolated and characterized. Several different scFvs were selected, but those in the largest group were closely related to each other and differed in 0 to 5 amino acid residues with respect to their consensus sequence, the likely common progenitor. The best scFv had a dissociation constant of (4 ± 1) × 10−11 M, measured in solution. One amino acid residue in complementarity determining region L1 was found to be responsible for a 65-fold higher affinity than the likely progenitor. It appears that this high-affinity scFv was selected from the mutations occurring during ribosome display in vitro, and that this constitutes an affinity maturation inherent in this method. The in vitro-selected scFvs could be functionally expressed in the Escherichia coli periplasm with good yields or prepared by in vitro refolding. Thus, ribosome display can be a powerful methodology for in vitro library screening and simultaneous sequence evolution.
Resumo:
The CHL1 (NRT1) gene of Arabidopsis encodes a nitrate-inducible nitrate transporter that is thought to be a component of the low-affinity (mechanism II) nitrate-uptake system in plants. A search was performed to find high-affinity (mechanism I) uptake mutants by using chlorate selections on plants containing Tag1 transposable elements. Chlorate-resistant mutants defective in high-affinity nitrate uptake were identified, and one had a Tag1 insertion in chl1, which was responsible for the phenotype. Further analysis showed that chl1 mutants have reduced high-affinity uptake in induced plants and are missing a saturable component of the constitutive, high-affinity uptake system in addition to reduced low-affinity uptake. The contribution of CHL1 to constitutive high-affinity uptake is higher when plants are grown at more acidic pH, conditions that increase the level of CHL1 mRNA. chl1 mutants show reduced membrane depolarization in root epidermal cells in response to low (250 μM) and high (10 mM) concentrations of nitrate. Low levels of nitrate (100 μM) induce a rapid increase in CHL1 mRNA. These results show that CHL1 is an important component of both the high-affinity and the low-affinity nitrate-uptake systems and indicate that CHL1 may be a dual-affinity nitrate transporter.
Resumo:
Mutant, but not wild-type p53 binds with high affinity to a variety of MAR-DNA elements (MARs), suggesting that MAR-binding of mutant p53 relates to the dominant-oncogenic activities proposed for mutant p53. MARs recognized by mutant p53 share AT richness and contain variations of an AATATATTT “DNA-unwinding motif,” which enhances the structural dynamics of chromatin and promotes regional DNA base-unpairing. Mutant p53 specifically interacted with MAR-derived oligonucleotides carrying such unwinding motifs, catalyzing DNA strand separation when this motif was located within a structurally labile sequence environment. Addition of GC-clamps to the respective MAR-oligonucleotides or introducing mutations into the unwinding motif strongly reduced DNA strand separation, but supported the formation of tight complexes between mutant p53 and such oligonucleotides. We conclude that the specific interaction of mutant p53 with regions of MAR-DNA with a high potential for base-unpairing provides the basis for the high-affinity binding of mutant p53 to MAR-DNA.
Resumo:
Near infrared Yb3+ vibronic sideband spectroscopy was used to characterize specific lanthanide binding sites in bacteriorhodopsin (bR) and retinal free bacteriorhodopsin (bO). The VSB spectra for deionized bO regenerated with a ratio of 1:1 and 2:1 ion to bO are identical. Application of a two-dimensional anti-correlation technique suggests that only a single Yb3+ site is observed. The Yb3+ binding site in bO is observed to consist of PO2− groups and carboxylic acid groups, both of which are bound in a bidentate manner. An additional contribution most likely arising from a phenolic group is also observed. This implies that the ligands for the observed single binding site are the lipid head groups and amino acid residues. The vibronic sidebands of Yb3+ in deionized bR regenerated at a ratio of 2:1 ion to bR are essentially identical to those in bO. The other high-affinity binding site is thus either not evident or its fluorescence is quenched. A discussion is given on the difference in binding of Ca2+ (or Mg2+) and lanthanides in phospholipid membrane proteins.
Resumo:
Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphate, LPA) is a multifunctional lipid mediator found in a variety of organisms that span the phylogenetic tree from humans to plants. Although its physiological function is not clearly understood, LPA is a potent regulator of mammalian cell proliferation; it is one of the major mitogens found in blood serum. In Xenopus laevis oocytes, LPA elicits oscillatory Cl− currents. This current, like other effects of LPA, is consistent with a plasma membrane receptor-mediated activation of G protein-linked signal transduction pathways. Herein we report the identification of a complementary DNA from Xenopus that encodes a functional high-affinity LPA receptor. The predicted structure of this protein of 372 amino acids contains features common to members of the seven transmembrane receptor superfamily with a predicted extracellular amino and intracellular carboxyl terminus. An antisense oligonucleotide derived from the first 5–11 predicted amino acids, selectively inhibited the expression of the endogenous high-affinity LPA receptors in Xenopus oocytes, whereas the same oligonucleotide did not affect the low-affinity LPA receptor. Expression of the full-length cRNA in oocytes led to an increase in maximal Cl− current due to increased expression of the high-affinity LPA receptor, but activation of the low-affinity receptor was, again, unaffected. Oocytes expressing cRNA prepared from this clone showed no response to other lipid mediators including prostaglandins, leukotrienes, sphingosine 1-phosphate, sphingosylphosphorylcholine, and platelet-activating factor, suggesting that the receptor is highly selective for LPA.
Resumo:
Factor VIIa (VIIa), the serine protease that initiates the coagulation pathways, is catalytically activated upon binding to its cell surface receptor and cofactor tissue factor (TF). This study provides a comprehensive analysis of the functional surface of VIIa by alanine scanning mutagenesis of 112 residues. Residue side chains were defined which contribute to TF binding and factor X hydrolysis. Energetically important binding contacts at the interface with TF were identified in the first epidermal growth factor domain of VIIa (Gln-64, Ile-69, Phe-71, Arg-79) and in the protease domain (Arg-277, Met-306, Asp-309). The observed energetic defects are in good agreement with the corresponding residues in TF, suggesting that the VIIa light chain plays a prominent role in high affinity binding of cofactor. Mutation of protease domain interface residues indicated that TF allosterically influences the active site of VIIa. Stabilization of a labile zymogen to enzyme transition could explain the activating effect of TF on VIIa catalytic function. Residues important for factor X hydrolysis were found in three regions of the protease domain: (i) specificity determinants in the catalytic cleft and adjacent loops, (ii) an exosite near the TF binding site, and (iii) a large electronegative exosite which is in a position analogous to the basic exosite I of thrombin. TF regions involved in factor X activation are positioned on the same face of the TF·VIIa complex as the two exosites identified on the protease domain surface, providing evidence for an extended interaction of TF·VIIa with macromolecular substrate.
Resumo:
A large library of phage-displayed human single-chain Fv antibodies (scFv), containing 6.7 × 109 members, was generated by improving the steps of library construction. Fourteen different protein antigens were used to affinity select antibodies from this library. A panel of specific antibodies was isolated with each antigen, and each panel contained an average of 8.7 different scFv. Measurements of antibody–antigen interactions revealed several affinities below 1 nM, comparable to affinities observed during the secondary murine immune response. In particular, four different scFv recognizing the ErbB2 protein had affinities ranging from 220 pM to 4 nM. Antibodies derived from the library proved to be useful reagents for immunoassays. For example, antibodies generated to the Chlamydia trachomatis elementary bodies stained Chlamydia-infected cells, but not uninfected cells. These results demonstrate that phage antibody libraries are ideally suited for the rapid production of panels of high-affinity mAbs to a wide variety of protein antigens. Such libraries should prove especially useful for generating reagents to study the function of gene products identified by genome projects.