919 resultados para High-Order Accuracy
Resumo:
Liquid crystalline properties of a mesomorphic polyacetylene {-[HC=C(CH2 )(9)OOC-Biph-OC7H15](n)- (PA9EO7), Biph=4-4'-biphenylyl} are investigated by X-ray diffraction, polarizing optical microscope, and transmission electron microscope. Polyacetylene PA9EO7 from solution adopts a sandwich structure, which is a high order smectic phase. The biphenylyl pendants pack in a hexagonal fashion and the distance between two appendages is 4.51 Angstrom. The heptyloxy tails on one polymer backbone overlap with those on the neighboring chain. The nonyl spacer and the heptyloxy tail exhibit a hexagonal packing arrangement with intermolecular distance of 3.24 Angstrom.
Resumo:
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.
Resumo:
We report high harmonic generation from a 248.6-nm KrF laser giving harmonic orders up to the 37th (67 Angstrom) in a helium gas jet and the 35th (71 Angstrom) in neon, for laser intensities up to 4 x 10(17) W/cm(2) in 380-fs pulses. These observations are interpreted using theoretical modeling that identifies the ion species He+, Ne+, and Ne2+ as the sources of the highest harmonics.
Resumo:
We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two- and three-dimensional particle-in-cell simulations.
Resumo:
Beam divergences of high-order extreme ultraviolet harmonics from intense laser interactions with steep plasma density gradients are studied through experiment and Fourier analysis of the harmonic spatial phase. We show that while emission due to the relativistically oscillating mirror mechanism can be explained by ponderomotive surface denting, in agreement with previous results, the divergence of the emission due to the coherent wake emission mechanism requires a combination of the dent phase and an intrinsic emission phase. The temporal dependence of the divergences for both mechanisms is highlighted while it is also shown that the coherent wake emission divergence can be small in circumstances where the phase terms compensate each other. © 2013 American Physical Society.
Resumo:
We apply the time-dependent R-matrix method to investigate harmonic generation from Ne+ at a wavelength of 390 nm and intensities up to 1015 W cm−2. The 1s22s22p4 (3Pe,1De, and 1Se) states of Ne2+ are included as residual-ion states to assess the influence of interference between photoionization channels associated with these thresholds. The harmonic spectrum is well approximated by calculations in which only the 3Pe and 1De thresholds are taken into account, but no satisfactory spectrum is obtained when a single threshold is taken into account. Within the harmonic plateau, extending to about 100 eV, individual harmonics can be suppressed at particular intensities when all Ne2+ thresholds are taken into account. The suppression is not observed when only a single threshold is accounted for. Since the suppression is dependent on intensity, it may be difficult to observe experimentally.
Resumo:
A new regime of relativistic high-order harmonic generation has been discovered (Pirozhkov 2012 Phys. Rev. Lett. 108 135004). Multi-terawatt relativistic-irradiance (>1018 W cm−2) femtosecond (~30–50 fs) lasers focused to underdense (few × 1019 cm−3) plasma formed in gas jet targets produce comb-like spectra with hundreds of even and odd harmonic orders reaching the photon energy of 360 eV, including the 'water window' spectral range. Harmonics are generated either by linearly or circularly polarized pulses from the J-KAREN (KPSI, JAEA) and Astra Gemini (CLF, RAL, UK) lasers. The photon number scalability has been demonstrated with a 120 TW laser, producing 40 μJ sr−1 per harmonic at 120 eV. The experimental results are explained using particle-in-cell simulations and catastrophe theory. A new mechanism of harmonic generation by sharp, structurally stable, oscillating electron spikes at the joint of the boundaries of the wake and bow waves excited by a laser pulse is introduced. In this paper, detailed descriptions of the experiments, simulations and model are provided and new features are shown, including data obtained with a two-channel spectrograph, harmonic generation by circularly polarized laser pulses and angular distribution.
Resumo:
Ultrashort, high contrast laser pulses when focused to high intensity and reflected from a steep solid density 'plasma mirror (PM)' contain coherent XUV radiation in the form of high-order harmonics. The emission can either be due to the relativistically driven oscillating PM (ROM) [1] or due to Coherent wake emission (CWE) [2]. Selective control over the mechanisms and the characteristics of these harmonics and understanding the physics is crucial for the development of intense attosecond light sources. © 2013 IEEE.
Resumo:
High-order-harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density functional theory while the ions move classically. The interaction with both linearly and circularly polarised infra-red ($\lambda = 800$ nm) laser pulses of duration 10 cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly polarised pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included while our results for linearly polarised pulses are compared with both previous calculations and experiment. We find that even for the short duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly polarised pulses are used, the response to circularly polarised pulses is almost comparable, in agreement with previous experimental results.
Resumo:
Passive intermodulation (PIM) often limits the performance of communication systems, particularly in the presence of multiple carriers. Since the origins of the apparently multiple physical sources of nonlinearity causing PIM in distributed circuits are not fully understood, the behavioural models are frequently employed to describe the process of PIM generation. In this paper, a memoryless nonlinear polynomial model, capable of predicting high-order multi-carrier intermodulation products, is deduced from the third-order two-tone PIM measurements on a microstrip transmission line with distributed nonlinearity. The analytical model of passive distributed nonlinearity is implemented in Keysight Technology’s ADS simulator to evaluate the adjacent band power ratio for three-tone signals. The obtained results suggest that the costly multi-carrier test setups can possibly be replaced by a simulation tool based on the properly retrieved nonlinear polynomial model.
Resumo:
Wir entwickeln die Starkfeldnäherung für die Erzeugung hoher Harmonischer in Wasserstoffmolekülen, wobei die Vibrationsbewegung berücksichtigt wird, sowie die laserinduzierte Kopplung zwischen den beiden untersten Born-Oppenheimer-Zuständen im Molekülion, das durch die anfängliche Ionisation des Moleküls erzeugt wird. Wir zeigen, dass die Kopplung bei längeren Laserwellenlängen (≈ 2 μm) wichtig wird und zu einer Reduzierung der Erzeugung von Harmonischen führt, sowie zu einer Änderung des Verhältnisses von Harmonischen in verschiedenen Isotopen. ----------------------------------------------------------------------- We develop the strong-field approximation for high-order harmonic generation in hydrogen molecules, including the vibrational motion and the laser-induced coupling of the lowest two Born-Oppenheimer states in the molecular ion that is created by the initial ionization of the molecule. We show that the field dressing becomes important at long laser wavelengths (≈ 2 μm), leading to an overall reduction of harmonic generation and modifying the ratio of harmonic signals from different isotopes.