947 resultados para High selectivity
Resumo:
A highly active and selective K-Pd/MnOx-ZrO2-ZnO catalyst for the one-step synthesis of 2-pentanone from ethanol is described. The possible reaction pathways for ethanol reaction over K-Pd/MnOx-ZrO2-ZnO catalyst were investigated by means of TPSR, CO2- and NH3-TPD techniques. The reactions were performed in a fixed bed continuous flow reactor. Complete conversion with high selectivity for 2-pentanone, was observed under 370 similar to 390degreesC, 2 similar to 4 MPa, GHSV = 8000 similar to 10,000 h(-1) and LHSV < 1.25 h(-1) conditions. Ethanol reactions over K-Pd/MnOx-ZrO2-ZnO catalyst showed that the catalyst could catalyze dehydrogenation. aldol. dehydration and hydrogenation reactions. Both acidic and basic properties are found on the surface of K-Pd/MnOx-ZrO2-ZnO catalyst, whose multifunctionality with the combination of basic, acid and metal sites may be responsible for the efficiency of the K-PdMnOx-ZrO2-ZnO catalyst. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The gas-phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene in the presence of molecular oxygen has been studied over various Mn-based catalysts. It is found that LiCl/MnOx/PC (Portland cement) catalyst exhibits the highest catalytic performance, and a 42.8% cyclohexane conversion, 58.8% cyclohexene selectivity and 25.2% cyclohexene yield can be achieved under 600 degrees C, 20,000 h(-1) and C6H12/O-2/N-2= 14/7/79. There are good correlations between the selectivities to cyclohexene and the electrical conductivities of Li doped Mn-based catalysts, from which it is deduced that the non-fully reduced oxygen species (O-2(-), O-2(2-), O-) involved in a new phase of LiMn2O4 might be responsible for the high selectivity toward cyclohexene, whereas the Mn2O3 crystal phase results in the COx formation. The selectivity to cyclohexene increases with increasing molar ratio of Li to Mn in LiCl/ MnOx/PC.
Resumo:
An immunosorbent was fabricated by encapsulation Of monoclonal anti-isoproturon antibodies in sol-gel matrix. The immunosorbent-based loading, rinsing and eluting processes were optimized. Based on these optimizations, the sol-gel immunosorbent (SG-IS) selectively extracted isoproturon from an artificial mixture of 68 pesticides. In addition to this high selectivity, the SG-IS proved to be reusable. The SG-IS was combined with liquid chromatography-tandem mass spectrometry (LC-MS-MS) to determine isoproturon in surface water, and the linear range was up to 2.2 mu g/l with correlation coefficient higher than 0.99 and relative standard deviation (RSD) lower than 5% (n = 8). The limit of quantitation (LOQ) for 25-ml surface water sample was 5 ng/l. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Group IV materials such as silicon nanocrystals (Si NCs) and carbon quantum dots (CQDs) have received great attention as new functional materials with unique physical/chemical properties that are not found in the bulk material. This thesis reports the synthesis and characterisation of both types of nanocrystal and their application as fluorescence probes for the detection of metal ions. In chapter 2, a simple method is described for the size controlled synthesis of Si NCs within inverse micelles having well defined core diameters ranging from 2 to 6 nm using inert atmospheric synthetic methods. In addition, ligands with different molecular structures were utilised to reduce inter-nanocrystal attraction forces and improve the stability of the NC dispersions in water and a variety of organic solvents. Regulation of the Si NCs size is achieved by variation of the surfactants and addition rates, resulting high quality NCs with standard deviations (σ = Δd/d) of less than 10 %. Large scale production of highly mondisperse Si NC was also successfully demonstrated. In chapter 3, a simple solution phase synthesis of size monodisperse carbon quantum dots (CQDs) using a room temperature microemulsion strategy is demonstrated. The CQDs are synthesized in reverse micelles via the reduction of carbon tetrachloride using a hydride reducing agent. CQDs may be functionalised with covalently attached alkyl or amine monolayers, rendering the CQDs dispersible in wide range of polar or non-polar solvents. Regulation of the CQDs size was achieved by utilizing hydride reducing agents of different strengths. The CQDs possess a high photoluminescence quantum yield in the visible region and exhibit excellent photostability. In chapter 4, a simple and rapid assay for detection of Fe3+ ions was developed, based on quenching of the strong blue-green Si NC photoluminescence. The detection method showed a high selectivity, with only Fe3+ resulting in strong quenching of the fluorescence signal. No quenching of the fluorescence signal was induced by Fe2+ ions, allowing for solution phase discrimination between the same ion in different charge states. The optimised sensor system showed a sensitive detection range from 25- 900 μM and a limit of detection of 20.8 μM
Resumo:
The kinetics of the acid-catalysed hydrolysis of cellobiose in the ionic liquid 1-ethyl-3-methylimidazolium chloride, [C(2)mim]Cl, was studied as a model for general lignocellulosic biomass hydrolysis in ionic liquid systems. The results show that the rate of the two competing reactions, polysaccharide hydrolysis and sugar decomposition, vary with acid strength, and that for acids with an aqueous pK(a) below approximately zero, the hydrolysis reaction is significantly faster than the degradation of glucose, thus allowing hydrolysis to be performed with a high selectivity in glucose. In tests with soluble cellulose, hemicellulose (xylan), and lignocellulosic biomass (Miscanthus grass), comparable hydrolysis rates were observed with bond scission occurring randomly along the biopolymer chains, in contrast to end-group hydrolysis observed with aqueous acids.
Resumo:
DRIFTS, TGA and resistance measurements have been used to study the mechanism of water and hydrogen interaction accompanied by a resistance change (sensor signal) of blank and Pd doped SnO2. It was found that a highly hydroxylated surface of blank SnO2 reacts with gases through bridging hydroxyl groups, whereas the Pd doped materials interact with hydrogen and water through bridging oxygen. In the case of blank SnO2 the sensor signal maximum towards H-2 in dry air (R-0/R-g) is observed at similar to 345 degrees C, and towards water, at similar to 180 degrees C, which results in high selectivity to hydrogen in the presence of water vapors (minor humidity effect). In contrast, on doping with Pd the response to hydrogen in dry air and to water occurred in the same temperature region (ca. 140 degrees C) leading to low selectivity with a high effect of humidity. An increase in water concentration in the gas phase changes the hydrogen interaction mechanism of Pd doped materials, while that of blank SnO2 is unchanged. The interaction of hydrogen with the catalyst doped SnO2 occurs predominantly through hydroxyl groups when the volumetric concentration of water in the gas phase is higher than that of H-2 by a factor of 1000.
Resumo:
Asymmetric hydrogenation of methyl acetoacetate to methyl (R)-3-hydroxybutyrate by [(R)-RuCl(binap)( p-cymen)] Cl has been studied in methanol-ionic liquid and methanol-dense CO(2) solvent systems. The ionic pairs triethylhexylammonium and 1-methylimidazolium with bis(trifluoromethane sulfonyl) imide and hexafluorophosphates were used. The role of ionic pairs on the kinetic parameters and (enantio) selectivity has been demonstrated. Although the CO(2) expanded methanol system suffered from a reduction in both reaction rate and product selectivity, this changed in the presence of water. The high selectivity of the optimized methanol-CO(2)-water-halide system was designed as a consequence of observed additive effects.
Resumo:
A new method of sol-gel polymer template synthesis of mesoporous catalytic thin films has been proposed which allows controlling the chemical nature of the film, the porosity, thickness and loading with an active species. The mesoporous films with a long-order structure can be obtained in a narrow range of surfactant-to-metal precursor molar ratios from 0.006 to 0.009. The catalytic film thickness was varied from 300 to 1000 nm while providing a uniform catalyst distribution with a desired catalyst loading (1 wt. % Au nanoparticles) throughout the film. The films were characterized by TEM, SEM, ethanol adsorption and contact angle measurements. The calcination of the as-synthesized films at 573 K reduced Ti4+ sites to Ti3+. A 300 nm thick Au-containing film showed an initial TOF of 1.4 s(-1) and a selectivity towards unsaturated alcohols as high as 90% in the hydrogenation of citral. Thicker films demonstrated a high selectivity towards the saturated aldehyde (above 55%) and a lower intrinsic catalytic activity (initial TOF of 0.7-0.9 s(-1)) in the absence of internal diffusion limitations.
Resumo:
Perspective and front cover article: Homogeneous catalysts entrapped in silica matrices, including ionic liquid containing 'ionogels', exhibit high selectivity, unexpected activity and excellent recyclability.
Resumo:
The microkinetics based on density function theory (DFT) calculations is utilized to investigate the reaction mechanism of crotonaldehyde hydrogenation on Pt(111) in the free energy landscape. The dominant reaction channel of each hydrogenation product is identified. Each of them begins with the first surface hydrogenation of the carbonyl oxygen of crotonaldehyde on the surface. A new mechanism, 1,4-addition mechanism generating enols (butenol), which readily tautomerize to saturated aldehydes (butanal), is identified as a primary mechanism to yield saturated aldehydes instead of the 3,4-addition via direct hydrogenation of the ethylenic bond. The calculation results also show that the full hydrogenation product, butylalcohol, mainly stems from the deep hydrogenation of surface open-shell dihydrogenation intermediates. It is found that the apparent barriers of the dominant pathways to yield three final products are similar on P(111), which makes it difficult to achieve a high selectivity to the desired crotyl alcohol (COL).
Resumo:
The ionic liquid, tributylmethylammonium methylcarbonate, has been employed as a catalytic base for clean N-methylation of indole with dimethylcarbonate. The reaction conditions were optimised under microwave heating to give 100% conversion and 100% selectivity to N-methylindole, and subsequently transferred to a high temperature/high pressure (285 degrees C/150 bar) continuous flow process using a short (3 min) residence time and 2 mol% of the catalyst to efficiently methylate a variety of different amines, phenols, thiophenols and carboxylic acid substrates. The extremely short residence times, versatility, and high selectivity have significant implications for the synthesis of a wide range of pharmaceutical intermediates, as high product throughputs can be obtained via this scalable continuous flow protocol. It has also been shown that the ionic liquid can be generated in situ from tributylamine, which has the net effect of transforming an ineffective stoichiometric base into a highly efficient catalyst for this broad class of reactions.
Resumo:
Transcription byRNApolymerase I (Pol-I) is the main driving force behind ribosome biogenesis, a fundamental cellular process that requires the coordinated transcription of all three nuclear polymerases. Increased Pol-I transcription and the concurrent increase in ribosome biogenesis has been linked to the high rates of proliferation in cancers. The ellipticine family contains a number of potent anticancer therapeutic agents, some having progressed to stage I and II clinical trials; however, the mechanism by which many of the compounds work remains unclear. It has long been thought that inhibition of Top2 is the main reason behind the drugs antiproliferative effects. Here we report that a number of the ellipticines, including 9-hydroxyellipticine, are potent and specific inhibitors of Pol-I transcription, with IC50 in vitro and in cells in the nanomolar range. Essentially, the drugs did not affect Pol-II and Pol-III transcription, demonstrating a high selectivity.Wehave shown that Pol-I inhibition occurs by a p53-, ATM/ATR-, and Top2-independent mechanism. We discovered that the drug influences the assembly and stability of preinitiation complexes by targeting the interaction between promoter recognition factor SL1 and the rRNA promoter. Our findings will have an impact on the design and development of novel therapeutic agents specifically targeting ribosome biogenesis.
Resumo:
Although many gold heterogeneous catalysts have been shown to exhibit significant activity and high selectivity for a wide range of reactions in both the liquid and gas phases, they are prone to irreversible deactivation. This is often associated with sintering or loss of the interaction of the gold with the support. Herein, we report on the use of methyl iodide as a method of dispersing gold nanoparticles supported on silica, titania, and alumina supports. In the case of titania- and alumina-based catalysts, the gold was transformed from nanometer particles into small clusters and some atomically dispersed gold. In contrast, although there was a drop in the gold particle size on the silica support following CH3I treatment, the size remained in the submicrometer range. The structural changes were correlated with changes in the selectivity and activity for ethanol dehydration and benzyl alcohol oxidation. From these observations, it is clear that this treatment provides a method by which deactivated gold catalysts can be reactivated via redispersion of the gold.
Resumo:
Methanol has been shown to promote the hydrocarbon selective catalytic reduction of NO with octane and toluene over 2wt% Ag/AlO catalyst for the first time. In order to understand its role in the reaction fast transient kinetic methods and in situ DRIFTS analysis have been used. The catalytic activity tests showed that the addition of methanol to the HC-SCR reaction results in a significant improvement in the low temperature activity of a Ag/AlO catalyst, despite the fact that methanol on its own is not reactive for the HC-SCR reaction. This promotional effect of methanol is dependent on the concentration of added methanol and is not necessarily associated with a higher concentration of reductant in the SCR feed. The fast transient kinetic analysis has shown that at each temperature the addition of methanol enhances the conversions of both NO and octane and the production of N with high selectivity in comparison with those observed with n-octane or toluene alone. This phenomenon is similar to the effect of H which may be associated with the release of hydrogen and ammonia during the transient switches at 250 and 300°C. Together with the fast transient experiments, the DRIFTS results showed that NCO species are formed when introducing methanol to the n-octane-SCR feed while CN species are removed/consumed from the surfaces of the Ag catalyst. These NCO species formed by adding methanol may play a vital role in promoting the catalytic activity of NO reduction and methanol itself can be an in situ source for hydrogen formation, which subsequently enhances the SCR reaction. © 2014 Elsevier B.V.