962 resultados para High occupancy vehicle lanes.
Resumo:
Background Heavy vehicle transportation continues to grow internationally; yet crash rates are high, and the risk of injury and death extends to all road users. The work environment for the heavy vehicle driver poses many challenges; conditions such as scheduling and payment are proposed risk factors for crash, yet the precise measure of these needs quantifying. Other risk factors such as sleep disorders including obstructive sleep apnoea have been shown to increase crash risk in motor vehicle drivers however the risk of heavy vehicle crash from this and related health conditions needs detailed investigation. Methods and Design The proposed case control study will recruit 1034 long distance heavy vehicle drivers: 517 who have crashed and 517 who have not. All participants will be interviewed at length, regarding their driving and crash history, typical workloads, scheduling and payment, trip history over several days, sleep patterns, health, and substance use. All participants will have administered a nasal flow monitor for the detection of obstructive sleep apnoea. Discussion Significant attention has been paid to the enforcement of legislation aiming to deter problems such as excess loading, speeding and substance use; however, there is inconclusive evidence as to the direction and strength of associations of many other postulated risk factors for heavy vehicle crashes. The influence of factors such as remuneration and scheduling on crash risk is unclear; so too the association between sleep apnoea and the risk of heavy vehicle driver crash. Contributory factors such as sleep quality and quantity, body mass and health status will be investigated. Quantifying the measure of effect of these factors on the heavy vehicle driver will inform policy development that aims toward safer driving practices and reduction in heavy vehicle crash; protecting the lives of many on the road network.
Resumo:
The health of tollbooth workers is seriously threatened by long-term exposure to polluted air from vehicle exhausts. Using traffic data collected at a toll plaza, vehicle movements were simulated by a system dynamics model with different traffic volumes and toll collection procedures. This allowed the average travel time of vehicles to be calculated. A three-dimension Computational Fluid Dynamics (CFD) model was used with a k–ε turbulence model to simulate pollutant dispersion at the toll plaza for different traffic volumes and toll collection procedures. It was shown that pollutant concentration around tollbooths increases as traffic volume increases. Whether traffic volume is low or high (1500 vehicles/h or 2500 vehicles/h), pollutant concentration decreases if electronic toll collection (ETC) is adopted. In addition, pollutant concentration around tollbooths decreases as the proportion of ETC-equipped vehicles increases. However, if the proportion of ETC-equipped vehicles is very low and the traffic volume is not heavy, then pollutant concentration increases as the number of ETC lanes increases.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
The case study site is physically disconnected from its surrounding community by the rail corridor and future bus lanes and is unlikely to be able to sustain its own commercial retail centre. As a result, it may also be socially disconnected from surrounding suburbs. However, it does offer proximity and access to an extensive „natural‟ area, and this is seen as key opportunity for the proposed development to develop a strong relationship with surrounding suburbs...
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
Seat pressure is known as a major factor of seat comfort in vehicles. In passenger vehicles, there is lacking research into the seat comfort of rear seat occupants. As accurate seat pressure measurement requires significant effort, simulation of seat pressure is evolving as a preferred method. However, analytic methods are based on complex finite element modeling and therefore are time consuming and involve high investment. Based on accurate anthropometric measurements of 64 male subjects and outboard rear seat pressure measurements in three different passenger vehicles, this study investigates if a set of parameters derived from seat pressure mapping are sensitive enough to differentiate between different seats and whether they correlate with anthropometry in linear models. In addition to the pressure map analysis, H-Points were measured with a coordinate measurement system based on palpated body landmarks and the range of H-Point locations in the three seats is provided. It was found that for the cushion, cushion contact area and cushion front area/force could be modeled by subject anthropometry,while only seatback contact area could be modeled based on anthropometry for all three vehicles. Major differences were found between the vehicles for other parameters.
Resumo:
In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application specific evolutionary algorithm (EA) implemented entirely on a field programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, compliments it to be an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and three-dimensional terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment and mission profiles. The architecture has been successfully synthesised for a target Xilinx Virtex-4 FPGA platform with 32% logic slices utilisation. Results obtained from case studies for a small UAV helicopter with environment derived from LIDAR (Light Detection and Ranging) data verify the effectiveness of the proposed FPGA-based path planner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.
Resumo:
In order to gain a competitive edge in the market, automotive manufacturers and automotive seat suppliers have identified seat ergonomics for further development to improve overall vehicle comfort. Adjustable lumbar support devices have been offered since long as comfort systems in either a 2-way or 4-way adjustable configuration, although their effect on lumbar strain is not well documented. The effect of a lumbar support on posture and muscular strain, and therefore the relationship between discomfort and comfort device parameter settings, requires clarification. The aim of this paper is to study the effect of a 4-way lumbar support on lower trunk and pelvis muscle activity, pelvic tilt and spine curvature during a car seating activity. 10 healthy subjects (5 m/f; age 19-39) performed a seating activity in a passenger vehicle with seven different static lumbar support positions. The lumbar support was tested in 3 different height positions in relation to the seatback surface centreline (high, centre, low), each having 2 depths positions (lumbar prominence). An extra depth position was added for the centre position. Posture data were collected using a VICON MX motion capture system and NORAXON DTS goniometers and inclinometer. A rigid-body model of an adjustable car seat with four-way adjustable lumbar support was constructed in UGS Siemens NX and connected to a musculoskeletal model of a seated-human, modelled in AnyBody. Wireless electromyography (EMG) was used to calibrate the musculoskeletal model and assess the relationship between (a) muscular strain and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface), (b) hip joint moment and lumbar prominence (normal to seatback surface) respective to lumbar height (alongside seatback surface) and (c) pelvic tilt and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface). This study was based on the assumption that the musculoskeletal human model was seated at the correct R-Point (SgRP), determined via the occupant packaging toolkit in the JACK digital human model. The effect of the interaction between the driver/car-seat has been investigated for factors resulting from the presence and adjustment of a 4-way lumbar support. The results obtained show that various seat adjustments, and driver’s lumbar supports can have complex influence on the muscle activation, joint forces and moments, all of which can affect the comfort perception of the driver. This study enables the automotive industry to optimise passenger vehicle seat development and design. It further more supports the evaluation of static postural and dynamic seat comfort in normal everyday driving tasks and can be applied for future car design to reduce investment and improve comfort.
Resumo:
The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.
Resumo:
Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such, this study aimed to assess the influence of vehicle emissions and nucleation formation on particle characteristics (particle number size distribution-PNSD and PM 2.5 concentration) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PNSD, particle number (PN) and PM 2.5 concentrations, respectively, for up to three weeks at each building. The results showed that both PNSD and PM 2.5 concentration around building envelopes were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During nucleation events, PN concentration in size range of <30 nm and total PN concentration increased (7-65% and 5-46%, respectively), while PM 2.5 concentration decreased (36-52%) with height. This study has shown an under acknowledged role for nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for studies of both human exposure and particle dynamics. © 2012 Author(s).
Resumo:
Rapid urbanisation and resulting continuous increase in traffic has been recognised as key factors in the contribution of increased pollutant loads to urban stormwater and in turn to receiving waters. Urbanisation primarily increases anthropogenic activities and the percentage of impervious surfaces in urban areas. These processes are collectively responsible for urban stormwater pollution. In this regard, urban traffic and land use related activities have been recognised as the primary pollutant sources. This is primarily due to the generation of a range of key pollutants such as solids, heavy metals and PAHs. Appropriate treatment system design is the most viable approach to mitigate stormwater pollution. However, limited understanding of the pollutant process and transport pathways constrains effective treatment design. This highlights necessity for the detailed understanding of traffic and other land use related pollutants processes and pathways in relation to urban stormwater pollution. This study has created new knowledge in relation to pollutant processes and transport pathways encompassing atmospheric pollutants, atmospheric deposition and build-up on ground surfaces of traffic generated key pollutants. The research study was primarily based on in-depth experimental investigations. This thesis describes the extensive knowledge created relating to the processes of atmospheric pollutant build-up, atmospheric deposition and road surface build-up and establishing their relationships as a chain of processes. The analysis of atmospheric deposition revealed that both traffic and land use related sources contribute total suspended particulate matter (TSP) to the atmosphere. Traffic sources become dominant during weekdays whereas land use related sources become dominant during weekends due to the reduction in traffic sources. The analysis further concluded that atmospheric TSP, polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) concentrations are highly influenced by total average daily heavy duty traffic, traffic congestion and the fraction of commercial and industrial land uses. A set of mathematical equation were developed to predict TSP, PAHs and HMs concentrations in the atmosphere based on the influential traffic and land use related parameters. Dry deposition samples were collected for different antecedent dry days and wet deposition samples were collected immediately after rainfall events. The dry deposition was found to increase with the antecedent dry days and consisted of relatively coarser particles (greater than 1.4 ìm) when compared to wet deposition. The wet deposition showed a strong affinity to rainfall depth, but was not related to the antecedent dry period. It was also found that smaller size particles (less than 1.4 ìm) travel much longer distances from the source and deposit mainly with the wet deposition. Pollutants in wet deposition are less sensitive to the source characteristics compared to dry deposition. Atmospheric deposition of HMs is not directly influenced by land use but rather by proximity to high emission sources such as highways. Therefore, it is important to consider atmospheric deposition as a key pollutant source to urban stormwater in the vicinity of these types of sources. Build-up was analysed for five different particle size fractions, namely, <1 ìm, 1-75 ìm, 75-150 ìm, 150-300 ìm and >300 ìm for solids, PAHs and HMs. The outcomes of the study indicated that PAHs and HMs in the <75 ìm size fraction are generated mainly by traffic related activities whereas the > 150 ìm size fraction is generated by both traffic and land use related sources. Atmospheric deposition is an important source for HMs build-up on roads, whereas the contribution of PAHs from atmospheric sources is limited. A comprehensive approach was developed to predict traffic and other land use related pollutants in urban stormwater based on traffic and other land use characteristics. This approach primarily included the development of a set of mathematical equations to predict traffic generated pollutants by linking traffic and land use characteristics to stormwater quality through mathematical modelling. The outcomes of this research will contribute to the design of appropriate treatment systems to safeguard urban receiving water quality for future traffic growth scenarios. The „real world. application of knowledge generated was demonstrated through mathematical modelling of solids in urban stormwater, accounting for the variability in traffic and land use characteristics.
Resumo:
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.
Resumo:
Glare indices have yet to be extensively tested in daylit open plan offices, as such there is no effective method to predict discomfort glare within these spaces. This study into discomfort glare in open plan green buildings targeted full-time employees, working under their everyday lighting conditions. Three green buildings in Brisbane were used for data collection, two were Green Star accredited and the other contained innovative daylighting strategies. Data were collected on full-time employees, mostly aged between 30 and 50 years, who broadly reflect the demographics of the wider working population in Australia. It was discovered 36 of the 64 respondents experienced discomfort from both electric and daylight sources at their workspace. The study used a specially tailored post-occupancy evaluation (POE) survey to help assess discomfort glare. Luminance maps extracted from High Dynamic Range (HDR) images were used to capture the luminous environment of the occupants. These were analysed using participant data and the program Evalglare. The physical results indicated no correlation with other developed glare metrics for daylight within these open plan green buildings, including the recently developed Daylight Glare Probability (DGP) Index. The strong influence of vertical illuminance, Ev in the DGP precludes the mostly contrast-based glare from windows observed in this investigation from forming a significant part of this index. Furthermore, critical assessment of the survey techniques used are considered. These will provide insight for further research into discomfort glare in the endeavour to fully develop a suitable glare metric.
Resumo:
Readily accepted knowledge regarding crash causation is consistently omitted from efforts to model and subsequently understand motor vehicle crash occurrence and their contributing factors. For instance, distracted and impaired driving accounts for a significant proportion of crash occurrence, yet is rarely modeled explicitly. In addition, spatially allocated influences such as local law enforcement efforts, proximity to bars and schools, and roadside chronic distractions (advertising, pedestrians, etc.) play a role in contributing to crash occurrence and yet are routinely absent from crash models. By and large, these well-established omitted effects are simply assumed to contribute to model error, with predominant focus on modeling the engineering and operational effects of transportation facilities (e.g. AADT, number of lanes, speed limits, width of lanes, etc.) The typical analytical approach—with a variety of statistical enhancements—has been to model crashes that occur at system locations as negative binomial (NB) distributed events that arise from a singular, underlying crash generating process. These models and their statistical kin dominate the literature; however, it is argued in this paper that these models fail to capture the underlying complexity of motor vehicle crash causes, and thus thwart deeper insights regarding crash causation and prevention. This paper first describes hypothetical scenarios that collectively illustrate why current models mislead highway safety researchers and engineers. It is argued that current model shortcomings are significant, and will lead to poor decision-making. Exploiting our current state of knowledge of crash causation, crash counts are postulated to arise from three processes: observed network features, unobserved spatial effects, and ‘apparent’ random influences that reflect largely behavioral influences of drivers. It is argued; furthermore, that these three processes in theory can be modeled separately to gain deeper insight into crash causes, and that the model represents a more realistic depiction of reality than the state of practice NB regression. An admittedly imperfect empirical model that mixes three independent crash occurrence processes is shown to outperform the classical NB model. The questioning of current modeling assumptions and implications of the latent mixture model to current practice are the most important contributions of this paper, with an initial but rather vulnerable attempt to model the latent mixtures as a secondary contribution.
Resumo:
Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.