973 resultados para Hidden conditional random field
Resumo:
The subject of the thesis is automatic sentence compression with machine learning, so that the compressed sentences remain both grammatical and retain their essential meaning. There are multiple possible uses for the compression of natural language sentences. In this thesis the focus is generation of television program subtitles, which often are compressed version of the original script of the program. The main part of the thesis consists of machine learning experiments for automatic sentence compression using different approaches to the problem. The machine learning methods used for this work are linear-chain conditional random fields and support vector machines. Also we take a look which automatic text analysis methods provide useful features for the task. The data used for machine learning is supplied by Lingsoft Inc. and consists of subtitles in both compressed an uncompressed form. The models are compared to a baseline system and comparisons are made both automatically and also using human evaluation, because of the potentially subjective nature of the output. The best result is achieved using a CRF - sequence classification using a rich feature set. All text analysis methods help classification and most useful method is morphological analysis. Tutkielman aihe on suomenkielisten lauseiden automaattinen tiivistäminen koneellisesti, niin että lyhennetyt lauseet säilyttävät olennaisen informaationsa ja pysyvät kieliopillisina. Luonnollisen kielen lauseiden tiivistämiselle on monta käyttötarkoitusta, mutta tässä tutkielmassa aihetta lähestytään television ohjelmien tekstittämisen kautta, johon käytännössä kuuluu alkuperäisen tekstin lyhentäminen televisioruudulle paremmin sopivaksi. Tutkielmassa kokeillaan erilaisia koneoppimismenetelmiä tekstin automaatiseen lyhentämiseen ja tarkastellaan miten hyvin erilaiset luonnollisen kielen analyysimenetelmät tuottavat informaatiota, joka auttaa näitä menetelmiä lyhentämään lauseita. Lisäksi tarkastellaan minkälainen lähestymistapa tuottaa parhaan lopputuloksen. Käytetyt koneoppimismenetelmät ovat tukivektorikone ja lineaarisen sekvenssin mallinen CRF. Koneoppimisen tukena käytetään tekstityksiä niiden eri käsittelyvaiheissa, jotka on saatu Lingsoft OY:ltä. Luotuja malleja vertaillaan Lopulta mallien lopputuloksia evaluoidaan automaattisesti ja koska teksti lopputuksena on jossain määrin subjektiivinen myös ihmisarviointiin perustuen. Vertailukohtana toimii kirjallisuudesta poimittu menetelmä. Tutkielman tuloksena paras lopputulos saadaan aikaan käyttäen CRF sekvenssi-luokittelijaa laajalla piirrejoukolla. Kaikki kokeillut teksin analyysimenetelmät auttavat luokittelussa, joista tärkeimmän panoksen antaa morfologinen analyysi.
Resumo:
Les données provenant de l'échantillonnage fin d'un processus continu (champ aléatoire) peuvent être représentées sous forme d'images. Un test statistique permettant de détecter une différence entre deux images peut être vu comme un ensemble de tests où chaque pixel est comparé au pixel correspondant de l'autre image. On utilise alors une méthode de contrôle de l'erreur de type I au niveau de l'ensemble de tests, comme la correction de Bonferroni ou le contrôle du taux de faux-positifs (FDR). Des méthodes d'analyse de données ont été développées en imagerie médicale, principalement par Keith Worsley, utilisant la géométrie des champs aléatoires afin de construire un test statistique global sur une image entière. Il s'agit d'utiliser l'espérance de la caractéristique d'Euler de l'ensemble d'excursion du champ aléatoire sous-jacent à l'échantillon au-delà d'un seuil donné, pour déterminer la probabilité que le champ aléatoire dépasse ce même seuil sous l'hypothèse nulle (inférence topologique). Nous exposons quelques notions portant sur les champs aléatoires, en particulier l'isotropie (la fonction de covariance entre deux points du champ dépend seulement de la distance qui les sépare). Nous discutons de deux méthodes pour l'analyse des champs anisotropes. La première consiste à déformer le champ puis à utiliser les volumes intrinsèques et les compacités de la caractéristique d'Euler. La seconde utilise plutôt les courbures de Lipschitz-Killing. Nous faisons ensuite une étude de niveau et de puissance de l'inférence topologique en comparaison avec la correction de Bonferroni. Finalement, nous utilisons l'inférence topologique pour décrire l'évolution du changement climatique sur le territoire du Québec entre 1991 et 2100, en utilisant des données de température simulées et publiées par l'Équipe Simulations climatiques d'Ouranos selon le modèle régional canadien du climat.
Resumo:
Le domaine biomédical est probablement le domaine où il y a les ressources les plus riches. Dans ces ressources, on regroupe les différentes expressions exprimant un concept, et définit des relations entre les concepts. Ces ressources sont construites pour faciliter l’accès aux informations dans le domaine. On pense généralement que ces ressources sont utiles pour la recherche d’information biomédicale. Or, les résultats obtenus jusqu’à présent sont mitigés : dans certaines études, l’utilisation des concepts a pu augmenter la performance de recherche, mais dans d’autres études, on a plutôt observé des baisses de performance. Cependant, ces résultats restent difficilement comparables étant donné qu’ils ont été obtenus sur des collections différentes. Il reste encore une question ouverte si et comment ces ressources peuvent aider à améliorer la recherche d’information biomédicale. Dans ce mémoire, nous comparons les différentes approches basées sur des concepts dans un même cadre, notamment l’approche utilisant les identificateurs de concept comme unité de représentation, et l’approche utilisant des expressions synonymes pour étendre la requête initiale. En comparaison avec l’approche traditionnelle de "sac de mots", nos résultats d’expérimentation montrent que la première approche dégrade toujours la performance, mais la seconde approche peut améliorer la performance. En particulier, en appariant les expressions de concepts comme des syntagmes stricts ou flexibles, certaines méthodes peuvent apporter des améliorations significatives non seulement par rapport à la méthode de "sac de mots" de base, mais aussi par rapport à la méthode de Champ Aléatoire Markov (Markov Random Field) qui est une méthode de l’état de l’art dans le domaine. Ces résultats montrent que quand les concepts sont utilisés de façon appropriée, ils peuvent grandement contribuer à améliorer la performance de recherche d’information biomédicale. Nous avons participé au laboratoire d’évaluation ShARe/CLEF 2014 eHealth. Notre résultat était le meilleur parmi tous les systèmes participants.
Resumo:
This work presents an analysis of hysteresis and dissipation in quasistatically driven disordered systems. The study is based on the random field Ising model with fluctuationless dynamics. It enables us to sort out the fraction of the energy input by the driving field stored in the system and the fraction dissipated in every step of the transformation. The dissipation is directly related to the occurrence of avalanches, and does not scale with the size of Barkhausen magnetization jumps. In addition, the change in magnetic field between avalanches provides a measure of the energy barriers between consecutive metastable states
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
Rainfall can be modeled as a spatially correlated random field superimposed on a background mean value; therefore, geostatistical methods are appropriate for the analysis of rain gauge data. Nevertheless, there are certain typical features of these data that must be taken into account to produce useful results, including the generally non-Gaussian mixed distribution, the inhomogeneity and low density of observations, and the temporal and spatial variability of spatial correlation patterns. Many studies show that rigorous geostatistical analysis performs better than other available interpolation techniques for rain gauge data. Important elements are the use of climatological variograms and the appropriate treatment of rainy and nonrainy areas. Benefits of geostatistical analysis for rainfall include ease of estimating areal averages, estimation of uncertainties, and the possibility of using secondary information (e.g., topography). Geostatistical analysis also facilitates the generation of ensembles of rainfall fields that are consistent with a given set of observations, allowing for a more realistic exploration of errors and their propagation in downstream models, such as those used for agricultural or hydrological forecasting. This article provides a review of geostatistical methods used for kriging, exemplified where appropriate by daily rain gauge data from Ethiopia.
Resumo:
Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.
Resumo:
The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.
Resumo:
Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.
Resumo:
Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.
Resumo:
We introduce a Sherrington-Kirkpatrick spin-glass model with the addition of elastic degrees of freedom. The problem is formulated in terms of an effective four-spin Hamiltonian in the pressure ensemble, which can be treated by the replica method. In the replica-symmetric approximation, we analyze the pressure-temperature phase diagram, and obtain expressions for the critical boundaries between the disordered and the ordered (spin-glass and ferromagnetic) phases. The second-order para-ferromagnetic border ends at a tricritical point, beyond which the transition becomes discontinuous. We use these results to make contact with the temperature-concentration phase diagrams of mixtures of hydrogen-bonded crystals.
Resumo:
This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.
Resumo:
In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.
Resumo:
This paper proposes a methodology for automatic extraction of building roof contours from a Digital Elevation Model (DEM), which is generated through the regularization of an available laser point cloud. The methodology is based on two steps. First, in order to detect high objects (buildings, trees etc.), the DEM is segmented through a recursive splitting technique and a Bayesian merging technique. The recursive splitting technique uses the quadtree structure for subdividing the DEM into homogeneous regions. In order to minimize the fragmentation, which is commonly observed in the results of the recursive splitting segmentation, a region merging technique based on the Bayesian framework is applied to the previously segmented data. The high object polygons are extracted by using vectorization and polygonization techniques. Second, the building roof contours are identified among all high objects extracted previously. Taking into account some roof properties and some feature measurements (e. g., area, rectangularity, and angles between principal axes of the roofs), an energy function was developed based on the Markov Random Field (MRF) model. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing (SA) algorithm. Experiments carried out with laser scanning DEM's showed that the methodology works properly, as it delivered roof contours with approximately 90% shape accuracy and no false positive was verified.