945 resultados para Heating system
Resumo:
This paper presents an analysis of technical and financial feasibility of the use of a solar system for water heating in a fictitious hotel located in the Northeast region. Thereunto it is used techniques of solar collectors´ sizing and methods of financial mathematics, such as Net Present Value (NPV), Internal Rate of Return (IRR) and Payback. It will also be presented a sensitivity analysis to verify which are the factors that impact the viability of the solar heating. Comparative analysis will be used concerning three cities of distinct regions of Brazil: Curitiba, Belém and João Pessoa. The viability of using a solar heating system will be demonstrated to the whole Brazil, especially to the northeast region as it is the most viable for such an application of solar power because of its high levels of solar radiation. Among the cities examined for a future installation of solar heating systems for water heating in the hotel chain, João Pessoa was the one that has proved more viable.
Resumo:
The purpose of this study is to describe the implementation of the Low Energy Electron Diffaction (LEED) technique in the Laboratory of Magnetic Nanostructures and Semiconductors of the Department of Theoretical and Experimental Physics of the Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil. During this work experimental apparatus were implemented for a complete LEED set-up. A new vacuum system was also set up. This was composed of a mechanical pump, turbomolecular pump and ionic pump for ultra-high vacuum and their respective pressure measurement sensors (Pirani gauge for low vacuum measures and the wide range gauge -WRG); ion cannon maintenance, which is basically mini-sputtering, whose function is sample cleaning; and set-up, maintenance and handling of the quadrupole mass spectrometer, whose main purpose is to investigate gas contamination inside the ultra-high vacuum chamber. It should be pointed out that the main contribution of this Master's thesis was the set-up of the sample heating system; that is, a new sample holder. In addition to the function of sample holder and heater, it was necessary to implement the function of sustaining the ultra-high vacuum environment. This set of actions is essential for the complete functioning of the LEED technique
Resumo:
The research behind this master dissertation started with the installation of a DC sputtering system, from its first stage, the adaptation of a refrigerating system, passing by the introduction of a heating system for the chamber using a thermal belt, until the deposition of a series of Fe/MgO(100) single crystal nanometric film samples. The deposition rates of some materials such as Fe, Py and Cu were investigated through an Atomic Force Microscope (AFM). For the single crystal samples, five of them have the same growth parameters and a thickness of 250Å, except for the temperature, which varies from fifty degrees from one to another, from 100ºC to 300ºC. Three other samples also have the same deposition parameters and a temperature of 300ºC, but with thickness of 62,5Å, 150Å, and 250Å. Magneto-optical Kerr Effect (MOKE) of the magnetic curves measurements and Ferromagnetic Resonance (FMR) were made to in order to study the influence of the temperature and thickness on the sample s magnetic properties. In the present dissertation we discuss such techniques, and the experimental results are interpreted using phenomenological models, by simulation, and discussed from a physical point of view, taking into account the system s free magnetic energy terms. The results show the growth of the cubic anisotropy field (Hac) as the sample s deposition temperature increases, presenting an asymptotic behavior, similar to the characteristic charging curve of a capacitor in a RC circuit. A similar behavior was also observed for the Hac due to the increase in the samples thicknesses. The 250˚A sample, growth at 300°C, presented a Hac field close to the Fe bulk value
Resumo:
The widespread falsification and/or adulteration of commercially available pharmaceutical preparations call for reliable methods of drug identification, preferably through selective and rapid sorting color tests that could be undertaken with minimum equipment remote from laboratory facilities. The present work deals with a convenient adaptation and refinement of a spot test devised by Feigl (1966) for urotropine, based on the hydrolytic cleavage of that substance in the presence of sulfuric acid, splitting out formaldehyde which is identified by its color reaction with chromotropic acid. A simple emergency kit was developed for the quick, efficient, inexpensive and easy performance of urotropine tests by semiskilled personnel even in the drugstore laboratory (or office) as well as in a mobile screening operation. It is shown that when the reagents are added according to the recommended sequence a self-heating system is generated, increasing substantially the reactions' rates and the test sensitivity as well. The identification limit found was 25 mug of urotropine, for both solid and liquid samples. The possible interference of 84 substances/materials was investigated. Interference was noted only for methylene blue, acriflavine, Ponceau Red, Bordeaux Red (these dyes are often included in urotropine dosage forms), pyramidone, dipyrone, quinine and tetracycline. A simple procedure for removing most of the interferences is described. Data for 8 commercial dosage forms and results obtained from their analysis are presented.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Foram obtidos perfis tubulares porosos de polietileno (PE) e de polietileno/fibra de açaí (PE/PA) 80/20 extrudados a partir de partículas granuladas de polietileno de alta densidade reciclado de embalagens pós-consumo de 600 μm, e deste com fibra de açaí de 300 μm. Para o processamento das peças foi desenvolvida uma extrusora mono-rosca de bancada, com sistema mecânico acionado por um motor elétrico de ½ CV (0,37 kw) controlado por um inversor de freqüência, com canhões, roscas, matriz e sistema de aquecimento substituíveis. Para permitir uma visualização didática de condições de operação do equipamento de modo simplificado foram realizados testes com parafina em canhão de vidro variando-se a velocidade de rotação do parafuso e perfil de temperatura, ajustando vazão mássica e pressão na saída. Para a extrusão dos perfis porosos foram realizados ensaios reológicos de PE e PE/FA sendo selecionado rosca, barril e matriz de alumínio; rosca com passo de 9 mm e relação comprimento diâmetro (L/D) 22, composta de um elemento misturador e um elemento de flutuação na zona de controle de vazão; ângulo entre o filete e o eixo da rosca 17º, folga entre a rosca e o barril 0,15 mm; rotação de 1,3 rpm; aquecimento ao longo do canhão de 120ºC; matriz tubular com 21 mm de diâmetro interno e mandril de 19 mm de diâmetro externo. Os perfis PE e PE/FA apresentaram poros com diâmetros médios de 0,7 e 0,6 mm; densidade relativa à água a 28ºC de 0,77 e 0,73; módulo de elasticidade de 1,002 e 2,601 GPa e máximo inchamento aparente do extrudado de 100 e 80%.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The anaerobic treatment of sewage is widely employed in Brazil and it is an appreciated way for the treatment of effluents, helping to reduce the environmental impact in rivers. The methane gas obtained from the process can be applied to improve the energetic efficiency of the system, reducing the amount of waste and the cost of the treatment process. This work presents the net energy balance of anaerobic reactors applied to the treatment of sewage. The analysis was performed considering full-scale and laboratory-scale treatment systems. In laboratory scale, the results from three kinds of systems were compared regarding the biological treatment of greywater. Two of them (UASB7 and UASB12) were anaerobic and the other one was a combined anaerobic-aerobic system (UASB7/SBR6). Greywater methanization (compared to theoretical maximum) was calculated considering 100% removal (g BOD/day), the literature percentage removal and the anionic surfactant presence in the effluentt. For each of these three cases, the efficiencies were, respectively, 16.9%, 43.6% and 51.3% in UASB7 reactor, 25.6%, 50.3% and 59.2% in UASB12 reactor and 30.6%, 61.2% and 71.9% in UASB7/SBR6 reactor. The energetic potential was found to be 4.66x10-4, 7.77x10-4 and 5.12x10-4 kWh/L for the UASB7, UASB12 and UASB7/SBR6 reactors, respectively. The pumping system, the aeration (in the anaerobic-aerobic system) and the temperature controlled heating system were considered to calculate the energetic consumption. However, the third one was not employed since tropical regions like Brazil do not need heating systems and also because of its high energetic consumption. The calculated net energy balance in the reactors was negative in the case of greywater, respectively -0.16, -0.28 and -0.18 kWh/L for the reactors UASB7, UASB12 and UASB7/SRB6. In full scale (ETE Jardim das Flores - Rio Claro, SP), the average energy... (Complete abstract click electronic access below)
Resumo:
This study is about a heating line that uses thermal oil. It is located in a facility that produces interlayers used in cars windshields. A plastic resin is melted and is sent to a matrix called DIE where the interlayers are produced. The DIE needs to receive heat from the circulation of thermal oil in four different regions of its interior, to ensure the correct thickness of the interlayer. The thermal energy is provided by electric heaters and the flow of thermal oil is impelled by four mechanically sealed centrifugal pumps (one per region). The key point of this study is the fact that these four pumps of the system have reported successive failures in the mechanical seals. Apparently, a poorly designed project has burdened the system intermittently. The pumps operation condition is located in a region of low efficiency, according to the characteristic curves. This fact is the source of the noticeable reduced time between failures. Changes in the configuration of the facility and in the number of pumps will be proposed, aiming to achieve higher operational efficiency. The proposals will be mathematically analyzed according to the Hydraulic Institute criteria. At the same time, we will also keep focus on an in-depth study of a heating system structure, starting with a detailed approach for each component and discussion about its real need and economic viability. At the end of this paper it is shown that the gain in efficiency achieved with the new proposed configuration reflects not only in the reduction of maintenance costs, but also a potential improvement in energy efficiency. It is shown that these two aspects are closely related and together form the basis for the design of a reliable and efficient pumping system
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The real increase in energy prices and the intention of reducing pollutant emissions in developed countries makes interesting to use solar energy in all the processes where its application is possible. As it is demonstrated in countries sited at latitudes with optimal conditions of solar radiation and temperature, it is possible to use solar energy as heat source for small-scale hatchery [1,2], but beyond, making a design for proper installation; it is possible to use solar energy as main or support energy source in medium and large size incubators . Monitoring of a normal actual process using temperature and relative humidity sensors is necessary to know the actual operating conditions that the solar heating system must be designed and sized for. Moreover, the identification and analysis of temperature and enthalpy gradients inside the incubator is of major importance.
Resumo:
Este trabajo presenta un estudio sobre el funcionamiento y aplicaciones de las células de combustible de membrana tipo PEM, o de intercambio de protones, alimentadas con hidrógeno puro y oxigeno obtenido de aire comprimido. Una vez evaluado el proceso de dichas células y las variables que intervienen en el mismo, como presión, humedad y temperatura, se presenta una variedad de métodos para la instrumentación de tales variables así como métodos y sistemas para la estabilidad y control de las mismas, en torno a los valores óptimos para una mayor eficacia en el proceso. Tomando como variable principal a controlar la temperatura del proceso, y exponiendo los valores concretos en torno a 80 grados centígrados entre los que debe situarse, es realizado un modelo del proceso de calentamiento y evolución de la temperatura en función de la potencia del calentador resistivo en el dominio de la frecuencia compleja, y a su vez implementado un sistema de medición mediante sensores termopar de tipo K de respuesta casi lineal. La señal medida por los sensores es amplificada de manera diferencial mediante amplificadores de instrumentación INA2126, y es desarrollado un algoritmo de corrección de error de unión fría (error producido por la inclusión de nuevos metales del conector en el efecto termopar). Son incluidos los datos de test referentes al sistema de medición de temperatura , incluyendo las desviaciones o error respecto a los valores ideales de medida. Para la adquisición de datos y implementación de algoritmos de control, es utilizado un PC con el software Labview de National Instruments, que permite una programación intuitiva, versátil y visual, y poder realizar interfaces de usuario gráficas simples. La conexión entre el hardware de instrumentación y control de la célula y el PC se realiza mediante un interface de adquisición de datos USB NI 6800 que cuenta con un amplio número de salidas y entradas analógicas. Una vez digitalizadas las muestras de la señal medida, y corregido el error de unión fría anteriormente apuntado, es implementado en dicho software un controlador de tipo PID ( proporcional-integral-derivativo) , que se presenta como uno de los métodos más adecuados por su simplicidad de programación y su eficacia para el control de este tipo de variables. Para la evaluación del comportamiento del sistema son expuestas simulaciones mediante el software Matlab y Simulink determinando por tanto las mejores estrategias para desarrollar el control PID, así como los posibles resultados del proceso. En cuanto al sistema de calentamiento de los fluidos, es empleado un elemento resistor calentador, cuya potencia es controlada mediante un circuito electrónico compuesto por un detector de cruce por cero de la onda AC de alimentación y un sistema formado por un elemento TRIAC y su circuito de accionamiento. De manera análoga se expone el sistema de instrumentación para la presión de los gases en el circuito, variable que oscila en valores próximos a 3 atmosferas, para ello es empleado un sensor de presión con salida en corriente mediante bucle 4-20 mA, y un convertidor simple corriente a tensión para la entrada al sistema de adquisición de datos. Consecuentemente se presenta el esquema y componentes necesarios para la canalización, calentamiento y humidificación de los gases empleados en el proceso así como la situación de los sensores y actuadores. Por último el trabajo expone la relación de algoritmos desarrollados y un apéndice con información relativa al software Labview. ABTRACT This document presents a study about the operation and applications of PEM fuel cells (Proton exchange membrane fuel cells), fed with pure hydrogen and oxygen obtained from compressed air. Having evaluated the process of these cells and the variables involved on it, such as pressure, humidity and temperature, there is a variety of methods for implementing their control and to set up them around optimal values for greater efficiency in the process. Taking as primary process variable the temperature, and exposing its correct values around 80 degrees centigrade, between which must be placed, is carried out a model of the heating process and the temperature evolution related with the resistive heater power on the complex frequency domain, and is implemented a measuring system with thermocouple sensor type K performing a almost linear response. The differential signal measured by the sensor is amplified through INA2126 instrumentation amplifiers, and is developed a cold junction error correction algorithm (error produced by the inclusion of additional metals of connectors on the thermocouple effect). Data from the test concerning the temperature measurement system are included , including deviations or error regarding the ideal values of measurement. For data acquisition and implementation of control algorithms, is used a PC with LabVIEW software from National Instruments, which makes programming intuitive, versatile, visual, and useful to perform simple user interfaces. The connection between the instrumentation and control hardware of the cell and the PC interface is via a USB data acquisition NI 6800 that has a large number of analog inputs and outputs. Once stored the samples of the measured signal, and correct the error noted above junction, is implemented a software controller PID (proportional-integral-derivative), which is presented as one of the best methods for their programming simplicity and effectiveness for the control of such variables. To evaluate the performance of the system are presented simulations using Matlab and Simulink software thereby determining the best strategies to develop PID control, and possible outcomes of the process. As fluid heating system, is employed a heater resistor element whose power is controlled by an electronic circuit comprising a zero crossing detector of the AC power wave and a system consisting of a Triac and its drive circuit. As made with temperature variable it is developed an instrumentation system for gas pressure in the circuit, variable ranging in values around 3 atmospheres, it is employed a pressure sensor with a current output via 4-20 mA loop, and a single current to voltage converter to adequate the input to the data acquisition system. Consequently is developed the scheme and components needed for circulation, heating and humidification of the gases used in the process as well as the location of sensors and actuators. Finally the document presents the list of algorithms and an appendix with information about Labview software.