985 resultados para Heat fluxes
Resumo:
Characteristics of pre-monsoon and monsoon boundary layer structure and turbulence were studied in New Delhi and Bangalore, India during the summer of 1987. Micrometeorological towers were installed and instrumented at these locations to provide mean and turbulent surface layer measurements, while information on the vertical structure of the atmosphere was obtained using miniradiosondes. Thermal structures of the pre-monsoon and monsoon boundary layers were quite distinct. The daytime, pre-monsoon boundary layer observed over New Delhi was much deeper than that of the monsoon boundary layer observed over Bangalore and at times was characterized by multiple inversions. Surface, turbulent sensible heat fluxes at both sites were approximately the same (235 and 200 Wm−2 for New Delhi and Bangalore, respectively). Diurnal variations in the monsoon boundary layer at Bangalore were more regular compared to those under pre-monsoon conditions at New Delhi. One-dimensional numerical simulations of the pre-monsoon boundary layer using a turbulent energy closure scheme show good agreement with observations.
Resumo:
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold's SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold's and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold's SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold's SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold's SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.
Resumo:
During recent years, an increase in the intensity of pre-monsoon tropical cyclones (TCs) is observed over the Arabian Sea. This study suggests that this increase is due to epochal variability in the intensity of TCs and is associated with epochal variability in the storm-ambient vertical wind shear and tropical cyclone heat potential (TCHP). There is a significant increase (0.53kJcm(-2)year(-1)) of TCHP during recent years. The warmer upper ocean helps TCs to sustain or increase their intensity by an uninterrupted supply of sensible and latent heat fluxes from the ocean surface to the atmosphere.
Resumo:
Heat fluxes around short, three-dimensional protuberances on sharp and blunt cones in hypersonic flow were experimentally measured using platinum thin-film sensors deposited on macor inserts. A parametric study of different protrusion geometries and flow conditions were conducted. Excessive heating was observed at locations near the protrusion where increased vorticity is expected, with the hottest spot being presented at the foot of the protuberance immediately upstream of it. If left unchecked, these hot spots could prove detrimental to hypersonic flight vehicles. Z-type schlieren technique was used to visualize the flow features qualitatively. New correlations to predict the heat flux at the hot spot have been proposed. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In response to the Indian Monsoon freshwater forcing, the Bay of Bengal exhibits a very strong seasonal cycle in sea surface salinity (SSS), especially near the mouths of the Ganges-Brahmaputra and along the east coast of India. In this paper, we use an eddy-permitting (similar to 25 km resolution) regional ocean general circulation model simulation to quantify the processes responsible for this SSS seasonal cycle. Despite the absence of relaxation toward observations, the model reproduces the main features of the observed SSS seasonal cycle, with freshest water in the northeastern Bay, particularly during and after the monsoon. The model also displays an intense and shallow freshening signal in a narrow (similar to 100 km wide) strip that hugs the east coast of India, from September to January, in good agreement with high-resolution measurements along two ships of opportunity lines. The mixed layer salt budget confirms that the strong freshening in the northern Bay during the monsoon results from the Ganges-Brahmaputra river discharge and from precipitation over the ocean. From September onward, the East India Coastal Current transports this freshwater southward along the east coast of India, reaching the southern tip of India in November. The surface freshening results in an enhanced vertical salinity gradient that increases salinity of the surface layer by vertical processes. Our results reveal that the erosion of the freshwater tongue along the east coast of India is not driven by northward horizontal advection, but by vertical processes that eventually overcome the freshening by southward advection and restore SSS to its premonsoon values. The salinity-stratified barrier layer hence only acts as a ``barrier'' for vertical heat fluxes, but is associated with intense vertical salt fluxes in the Bay of Bengal.
Resumo:
陆地生态系统与大气之间的水热碳交换是物质、能量循环的关键过程,一直以来都为研究者们所关注。进入20 世纪以来,特别是随着人们对全球气候变暖的逐步认识,气候变化对水热碳交换过程的影响及其对气候变化的响应研究更加备受关注。本研究以2004~2006 年近三年的涡度相关系统连续观测数据为依托,分析了雨养玉米农田水热碳通量的动态及其影响因子。研究表明,玉米农田水热通量(WHF) 呈显著的单峰型日变化, 日最大值出现在正午12:00~13:00,WHF 变化同步。潜热通量(LE)的季节变化规律与日变化相似,冬季小夏季大,年最大值与最小值分别出现在7 月和1 月。显热通量(Hs) 季节变化也呈单峰型,但年最大值出现在5 月,这主要与降水以及作物生长有关。半小时尺度上,WHF 主要受辐射控制,而日峰值受辐射峰值以及植被生长的双重影响;日尺度上,只要有降水过程,Hs 就会随土壤水分的增大而减小,降水停止后逐渐恢复。而降水对LE 的影响受到可用能量(AE)的干扰,表现出复杂的变化趋势。总的来说,降水持续时间越长AE 越少,对LE 的抑制越大;季节尺度上,WHF 受热量与水分的双重制约。Hs 随着天气回暖后第一次较大降水过程的出现呈现明显下降,而LE 则呈现相反的变化趋势。随着雨季到来和作物的生长,Hs 在7 月出现低谷,而LE 呈现相反的趋势随着降水量的增加而增大;年际间WHF 的分布规律大体一致,但因气象条件等的差异,特别是降水的差异造成年际间WHF 略有不同。在不同水文年型下,水分因子的影响作用有显著差异,且WHF 对热量与水分条件变化的敏感程度也不相同。欠水年,水分因子的作用更显著,是制约WHF 变化的主要控制因子,WHF 对水分的变化更敏感;而丰水年,水分因子的影响减弱,热量的盈亏决定着WHF 变化的主要方向。在不同水文年型下,水热碳通量对水热条件的变化表现出不同的响应方式,为研究生态系统对气候变化的响应提供了参考。 净碳(C)吸收期,玉米农田净碳交换(NEE)呈显著的日变化,在日出以后由CO2 释放转变为CO2 吸收,12:30 左右达到一天中的吸收峰值,日落前出现相反的转换。而净C 释放期内,NEE 均为正值且无明显日变化。NEE 季节变化也呈单峰型二次曲线,在7 月下旬或8 月上旬达到年最大吸收率。根据NEE 的正负,一年分为三个阶段:两个C 排放期与一个C 吸收期。一般C 吸收期从6月开始到9 月结束,此前此后均为C 排放期。在半小时、日时间尺度上,光通量密度(PPFD)与NEE 有着相似的变化规律,是控制NEE 的主要因子;在日、季节尺度上,叶面积指数(LAI)和气孔导度(gs)是影响NEE 的主要生物因子,且gs 的影响程度随着发育期的变化而变化,而不同年份间LAI 对NEE 的影响没有显著的差异。几乎在所有时间步长上,土壤温度(Ts)均为生态系统呼吸(Re)的主要控制因子,时间尺度愈短,二者的相关性愈好。总的来说,在较短时间尺度上,高PPFD 与夏季低温将会促进C 的吸收,有利于C 累积。 玉米农田日最大净C 吸收速率(NEEmax, daily)以及吸收释放转换点(NEE=0)均受PPFD 控制。NEEmax, daily 出现时间与PPFDmax, daily 出现时间几乎完全一致,当PPFD 达到1 日内极大值时,净C 吸收也相应达到了日最大值。但NEEmax, daily的量值还受到其它因子的影响。当水分条件充足时,还将受到LAI、gs 等生物因子的控制。NEE 由正转为负的转换点也是由PPFD 决定。当PPFD 稳定大于PPFD*( PPFD*=100 μmol•m-2s -1)时,净C 吸收开始;当PPFD 稳定小于PPFD*时,净C 吸收由此结束。1 日内,PPFD 稳定通过PPFD*之间的时间间隔决定了日净C 吸收的时间长度。日净C 吸收的时间越长,吸收量也越大,且有明显的季节变化,7 月最长9 月最短。 按照热量水分状况将三年分组,分为I 组(水分状况相似,热量条件不同)与II 组(热量条件相似,水分状况不同)。 I 组年际间PPFD 波动是造成C 交换格局变化的关键原因。而II 组年际间C 交换格局不同是由降水量及其不同分布引起的土壤含水量(SWC)变化是造成。SWC 可以解释年际间NEE 变异的97%,而大气水汽压亏缺(VPD)可以解释30.7%;温度因子通过影响C 收支中的呼吸项,间接影响着生态系统的NEE,它可以解释年际间NEE 变异的73.9%,也是造成年际间C 交换格局不同的原因之一;另外,PPFD 和发育期早晚以及净C吸收期长度等也同样影响着C 交换格局的变化。综合两组情况来看,由水分条件年际变化引起的NEE 的波动大于能量年际变化引起的波动。总之,在较长时间尺度上,NEE 对SWC 变化比其对PPFD 变化更敏感,说明在半干旱地区土壤水分条件仍然是决定C 交换格局的主导因子。 NEE 与LE 呈线性相关,它们之间的相关性主要受温度和NEE 的控制,温度越高,二者的相关性越弱,而NEE 越大二者相关性越好。同时,作物蒸腾与土壤蒸发的比例也是影响NEE 与LE 之间关系的主要因素。蒸腾作用所占的比例越大,二者的线性关系越显著,而土壤蒸发比例越大,二者的相关性越弱。总的来说,NEE 与LE 之间的线性关系有明显的季节变化,生长季好于非生长季,夏天好于冬天。 总之,雨养玉米农田水热碳通量既具有其它农田生态系统共有的动态特征,也具有其特有特征。
Resumo:
© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved. In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.
Resumo:
We study the effects of pulse heating parameters on the micro bubble behavior of a platinum microheater (100 mu m x 20 mu m) immersed in a methanol pool. The experiment covers the heat fluxes of 10-37 MW/m(2) and pulse frequencies of 25-500 Hz. The boiling incipience is initiated at the superheat limit of methanol, corresponding to the homogeneous nucleation. Three types of micro boiling patterns are identified. The first type is named as the bubble explosion and regrowth, consisting of a violent explosive boiling and shrinking, followed by a slower bubble regrowth and subsequent shrinking, occurring at lower heat fluxes. The second type, named as the bubble breakup and attraction, consists of the violent explosive boiling, bubble breakup and emission, bubble attraction and coalescence process, occurring at higher heat fluxes than those of the first type. The third type, named as the bubble size oscillation and large bubble formation, involves the initial explosive boiling, followed by a short periodic bubble growth and shrinking. Then the bubble continues to increase its size, until a constant bubble size is reached which is larger than the microheater length.
Resumo:
The winter wheat field straw mulching was conducted. Compared with the unmulched field, the straw mulching could alter turbulent heat exchange, evaporative heat loss and soil heat fluxes, and improve the temperature and humidity of air close to the ground as well as play a active role in water-saving and soil moisture retention, thus provided better microclimatic conditions for the growth and development of winter wheat.
Resumo:
Reducing uncertainties in the estimation of land surface evapotranspiration (ET) from remote-sensing data is essential to better understand earth-atmosphere interactions. This paper demonstrates the applicability of temperature-vegetation index triangle (T-s-VI) method in estimating regional ET and evaporative fraction (EF, defined as the ratio of latent heat flux to surface available energy) from MODIS/Terra and MODIS/Aqua products in a semiarid region. We have compared the satellite-based estimates of ET and EF with eddy covariance measurements made over 4 years at two semiarid grassland sites: Audubon Ranch (AR) and Kendall Grassland (KG). The lack of closure in the eddy covariance measured surface energy components is shown to be more serious at MODIS/Aqua overpass time than that at MODIS/Terra overpass time for both AR and KG sites. The T-s-VI-derived EF could reproduce in situ EF reasonably well with BIAS and root-mean-square difference (RMSD) of less than 0.07 and 0.13, respectively. Surface net radiation has been shown to be systematically overestimated by as large as about 60 W/m(2). Satisfactory validation results of the T-s-VI-derived sensible and latent heat fluxes have been obtained with RMSD within 54 W/m(2). The simplicity and yet easy use of the T-s-VI triangle method show a great potential in estimating regional ET with highly acceptable accuracy that is of critical significance in better understanding water and energy budgets on the Earth. Nevertheless, more validation work should be carried out over various climatic regions and under other different land use/land cover conditions in the future.
Resumo:
A new algorithm based on the multiparameter neural network is proposed to retrieve wind speed (WS), sea surface temperature (SST), sea surface air temperature, and relative humidity ( RH) simultaneously over the global oceans from Special Sensor Microwave Imager (SSM/I) observations. The retrieved geophysical parameters are used to estimate the surface latent heat flux and sensible heat flux using a bulk method over the global oceans. The neural network is trained and validated with the matchups of SSM/I overpasses and National Data Buoy Center buoys under both clear and cloudy weather conditions. In addition, the data acquired by the 85.5-GHz channels of SSM/I are used as the input variables of the neural network to improve its performance. The root-mean-square (rms) errors between the estimated WS, SST, sea surface air temperature, and RH from SSM/I observations and the buoy measurements are 1.48 m s(-1), 1.54 degrees C, 1.47 degrees C, and 7.85, respectively. The rms errors between the estimated latent and sensible heat fluxes from SSM/I observations and the Xisha Island ( in the South China Sea) measurements are 3.21 and 30.54 W m(-2), whereas those between the SSM/ I estimates and the buoy data are 4.9 and 37.85 W m(-2), respectively. Both of these errors ( those for WS, SST, and sea surface air temperature, in particular) are smaller than those by previous retrieval algorithms of SSM/ I observations over the global oceans. Unlike previous methods, the present algorithm is capable of producing near-real-time estimates of surface latent and sensible heat fluxes for the global oceans from SSM/I data.
Resumo:
[ 1] Intraseasonal variability of Indian Ocean sea surface temperature (SST) during boreal winter is investigated by analyzing available data and a suite of solutions to an ocean general circulation model for 1998 - 2004. This period covers the QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) observations. Impacts of the 30 - 90 day and 10 - 30 day atmospheric intraseasonal oscillations (ISOs) are examined separately, with the former dominated by the Madden-Julian Oscillation (MJO) and the latter dominated by convectively coupled Rossby and Kelvin waves. The maximum variation of intraseasonal SST occurs at 10 degrees S - 2 degrees S in the wintertime Intertropical Convergence Zone (ITCZ), where the mixed layer is thin and intraseasonal wind speed reaches its maximum. The observed maximum warming ( cooling) averaged over ( 60 degrees E - 85 degrees E, 10 degrees S - 3 degrees S) is 1.13 degrees C ( - 0.97 degrees C) for the period of interest, with a standard deviation of 0.39 degrees C in winter. This SST change is forced predominantly by the MJO. While the MJO causes a basin-wide cooling ( warming) in the ITCZ region, submonthly ISOs cause a more complex SST structure that propagates southwestward in the western-central basin and southeastward in the eastern ocean. On both the MJO and submonthly timescales, winds are the deterministic factor for the SST variability. Short-wave radiation generally plays a secondary role, and effects of precipitation are negligible. The dominant role of winds results roughly equally from wind speed and stress forcing. Wind speed affects SST by altering turbulent heat fluxes and entrainment cooling. Wind stress affects SST via several local and remote oceanic processes.
Resumo:
In general, competition between buoyancy mechanisms and mixing dynamics largely determines the water column structure in a shelf sea. A three dimensional baroclinic ocean model forced by surface heat fluxes and the 2.5 order Mellor-Yamada turbulence scheme is used to simulate the annual cycle of the temperature in the Bohai Sea. The difference between the sea surface temperature (SST) and sea bottom temperature (SBT) is used to examine the evolution of its vertical stratification. It is found that the water column is well-mixed from October to March and that the seasonal thermocline appears in April, peaks in July and then weakens afterwards, closely following the heat budget. In addition, the Loder parameter based on the topography and tidal current amplitude is also computed in order to examine tidal fronts in the BS, which are evident in summer months when the wind stirring mechanism is weak.
Resumo:
Essery, RLH & P, Etchevers, (2004). Parameter sensitivity in simulations of snowmelt. Journal of Geophysical Research, 109, doi:10. 1029/2004JD005036.
Resumo:
Physical oceanography is the study of physical conditions, processes and variables within the ocean, including temperature-salinity distributions, mixing of the water column, waves, tides, currents, and air-sea interaction processes. Here we provide a critical review of how satellite sensors are being used to study physical oceanography processes at the ocean surface and its borders with the atmosphere and sea-ice. The paper begins by describing the main sensor types that are used to observe the oceans (visible, thermal infrared and microwave) and the specific observations that each of these sensor types can provide. We then present a critical review of how these sensors and observations are being used to study i) ocean surface currents, ii) storm surges, iii) sea-ice, iv) atmosphere-ocean gas exchange and v) surface heat fluxes via phytoplankton. Exciting advances include the use of multiple sensors in synergy to observe temporally varying Arctic sea-ice volume, atmosphere- ocean gas fluxes, and the potential for 4 dimensional water circulation observations. For each of these applications we explain their relevance to society, review recent advances and capability, and provide a forward look at future prospects and opportunities. We then more generally discuss future opportunities for oceanography-focussed remote-sensing, which includes the unique European Union Copernicus programme, the potential of the International Space Station and commercial miniature satellites. The increasing availability of global satellite remote-sensing observations means that we are now entering an exciting period for oceanography. The easy access to these high quality data and the continued development of novel platforms is likely to drive further advances in remote sensing of the ocean and atmospheric systems.