899 resultados para Haemonchus similis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to evaluate the interactions of the pesticide Vertimec (R) 18EC in aquatic ecosystems. In this respect, soil plots were contaminated with Vertimec (R) 18EC at the concentration indicated for strawberry crops (0.125 L of solution m(-2)). After the contamination, torrential rainfall was simulated and the surface runoff was collected and transferred to mesocosm tanks in five treatments, run in triplicate: (1) control-C; (2) runoff from an uncontaminated plot-UR; (3) runoff from the plot contaminated with Vertimec (R) 18EC-CR; (4) direct application of Vertimec (R) 18EC in the water-V and (5) water samples gathered randomly to verify whether there was contamination between the mesocosms-RS. Water samples from these tanks were also submitted to ecotoxicological tests with Daphnia similis and analyses to evaluate the limnological characteristics, in five collection periods over 10 days (240 h). Physical and chemical differences were observed in the water samples, mainly related to increased turbidity, suspended solids and nutrients (nitrogen and phosphate forms). Acute toxicity was observed for the direct application treatment for the entire experimental period, and in some periods for the CR treatment (from 48 h to 168 h). The results obtained suggest that the pesticide did not fully degrade during the study period (10 days) in the direct application treatment, demonstrating that the presence of other substances in the commercial formulation contribute to the maintenance of toxicity. This represents a potential risk for aquatic ecosystems in areas adjacent to where the chemical is applied. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L-1, LC50 96 h for Chironomus xanthus of 2.67 mu g L-1 and LC50 48 h for Danio rerio of 33 mu g L-1. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES] Los problemas asociados al uso de antihelmínticos en el control de las nematodosis gastrointestinales, tales como la presencia de residuos en alimentos de origen animal o la aparición de resistencias han estimulado el estudio del control inmunológico de numerosas parasitosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eliminadas las páginas en blanco

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monepantel is the first drug of a new family of anthelmintics, the amino acetonitrile derivatives (AAD), presently used to treat ruminants infected with gastrointestinal nematodes such as Haemonchus contortus. Monepantel shows an excellent tolerability in mammals and is active against multidrug-resistant parasites, indicating that its molecular target is absent or inaccessible in the host and is different from those of the classic anthelmintics. Genetic approaches with mutant nematodes have suggested acetylcholine receptors of the DEG-3 subfamily as the targets of AADs, an enigmatic clade of ligand-gated ion channels that is specific to nematodes and does not occur in mammals. Here we demonstrate direct interaction of monepantel, its major active metabolite monepantel sulfone, and other AADs with potential targets of the DEG-3 subfamily of acetylcholine receptors. H. contortus DEG-3/DES-2 receptors were functionally expressed in Xenopus laevis oocytes and were found to be preferentially activated by choline, to permeate monovalent cations, and to a smaller extent, calcium ions. Although monepantel and monepantel sulfone did not activate the channels by themselves, they substantially enhanced the late currents after activation of the channels with choline, indicating that these AADs are type II positive allosteric modulators of H. contortus DEG-3/DES-2 channels. It is noteworthy that the R-enantiomer of monepantel, which is inactive as an anthelmintic, inhibited the late currents after stimulation of H. contortus DEG-3/DES-2 receptors with choline. In summary, we present the first direct evidence for interaction of AADs with DEG-3-type acetylcholine receptors and discuss these findings in the context of anthelmintic action of AADs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastro-intestinal nematodes in ruminants, especially Haemonchus contortus, are a global threat to sheep and cattle farming. The emergence of drug resistance, and even multi-drug resistance to the currently available classes of broad spectrum anthelmintics, further stresses the need for new drugs active against gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics, the Amino-Acetonitrile Derivatives (AADs), was recently discovered and the drug candidate AAD-1566 (monepantel) was chosen for further development. Studies with Caenorhabditis elegans suggested that the AADs act via nicotinic acetylcholine receptors (nAChR) of the nematode-specific DEG-3 subfamily. Here we identify nAChR genes of the DEG-3 subfamily from H. contortus and investigate their role in AAD sensitivity. Using a novel in vitro selection procedure, mutant H. contortus populations of reduced sensitivity to AAD-1566 were obtained. Sequencing of full-length nAChR coding sequences from AAD-susceptible H. contortus and their AAD-1566-mutant progeny revealed 2 genes to be affected. In the gene monepantel-1 (Hco-mptl-1, formerly named Hc-acr-23H), a panel of mutations was observed exclusively in the AAD-mutant nematodes, including deletions at intron-exon boundaries that result in mis-spliced transcripts and premature stop codons. In the gene Hco-des-2H, the same 135 bp insertion in the 5' UTR created additional, out of frame start codons in 2 independent H. contortus AAD-mutants. Furthermore, the AAD mutants exhibited altered expression levels of the DEG-3 subfamily nAChR genes Hco-mptl-1, Hco-des-2H and Hco-deg-3H as quantified by real-time PCR. These results indicate that Hco-MPTL-1 and other nAChR subunits of the DEG-3 subfamily constitute a target for AAD action against H. contortus and that loss-of-function mutations in the corresponding genes may reduce the sensitivity to AADs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzimidazoles were the first broad-spectrum anthelmintics and are still in use today against gastro-intestinal nematodes of ruminants such as Haemonchus contortus. Benzimidazoles block the polymerization of nematode microtubules. However, their efficacy is jeopardized by the spread of drug-resistant parasites that carry point mutations in beta-tubulin. Here we use a novel in vitro selection-in vivo propagation protocol to breed drug-resistant H. contortus. After 8 generations of selection with thiabendazole an in vitro resistance factor of 1000 was reached that was also relevant in vivo in infected sheep. The same procedure carried out with ivermectin produced only a moderate resistance phenotype that was not apparent in sheep. Cloning and sequencing of the beta-tubulin genes from the thiabendazole-resistant H. contortus mutants revealed all of the isotype 1 alleles, and part of the isotype 2 alleles, to carry the mutation glutamate(198) to alanine (E198A). An allele-specific PCR was developed, which may be helpful in monitoring the prevalence of alanine(198) encoding alleles in the beta-tubulin isotype 1 gene pool of H. contortus in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monepantel is a recently developed anthelmintic with a novel mode of action. Parasitic nematodes with reduced sensitivity to monepantel have led to the identification of MPTL-1, a ligand-gated ion-channel subunit of the parasitic nematode Haemonchus contortus, as a potential drug target. Homomeric MPTL-1 channels reconstituted in Xenopus oocytes are gated by µM concentrations of betaine and mM concentrations of choline. Measurement of reversal potentials indicated that the channel has a similar conductance for Na(+) and K(+) ions and does not permeate Ca(2+). Concentrations of monepantel (amino-acetonitrile derivative [AAD]-2225) >0.1 μM, but not its inactive enantiomer AAD-2224, induced channel opening in an irreversible manner. Currents elicited by monepantel alone were larger than the maximal current amplitudes achieved with betaine or choline, making monepantel a superagonist. Currents elicited by betaine or choline were allosterically potentiated by nM concentrations of monepantel and to a much smaller degree by AAD-2224. We have also reconstituted the Caenorhabditis elegans homomeric ACR-20 receptor in Xenopus oocytes. The acr-20 sequence has higher similarity to mptl-1 than acr-23, the primary target for monepantel mode of action in C. elegans. The ACR-20 channel is gated similarly as MPTL-1. Monepantel, but not AAD-2224, was able to induce channel opening in an irreversible manner at similar concentrations as for MPTL-1. Interestingly, the allosteric potentiation measured in the presence of betaine was much smaller than in MPTL-1 receptors. Together, these results establish the mode of action of monepantel in H. contortus and contribute to our understanding of the mode of action of this anthelmintic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of fecal pellet flux show that a large percentage of pellets produced in the upper ocean is degraded within the surface waters. It is therefore important to investigate these degradation mechanisms to understand the role of fecal pellets in the oceanic carbon cycle. Degradation of pellets is mainly thought to be caused by coprophagy (ingestion of fecal pellets) by copepods, and especially by the ubiquitous copepods Oithona spp. We examined fecal pellet ingestion rate and feeding behavior of O. similis and 2 other dominant copepod species from the North Sea (Calanus helgolandicus and Pseudocalanus elongatus). All investigations were done with fecal pellets as the sole food source and with fecal pellets offered together with an alternative suitable food source. The ingestion of fecal pellets by all 3 copepod species was highest when offered together with an alternative food source. No feeding behavior was determined for O. similis due to the lack of pellet capture in those experiments. Fecal pellets offered together with an alternative food source increased the filtration activity by C. helgolandicus and P. elongatus and thereby the number of pellets caught in their feeding current. However, most pellets were rejected immediately after capture and were often fragmented during rejection. Actual ingestion of captured pellets was rare (<37% for C. helgolandicus and <24% for P. elongatus), and only small pellet fragments were ingested unintentionally along with alternative food. We therefore suggest coprorhexy (fragmentation of pellets) to be the main effect of copepods on the vertical flux of fecal pellets. Coprorhexy turns the pellets into smaller, slower-sinking particles that can then be degraded by other organisms such as bacteria and protozooplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal lipid dynamics of various developmental stages were investigated in Pseudocalanus minutus and Oithona similis. For P. minutus, the dominance of 16:1(n?7), 16:4(n?3) and 20:5(n?3) fatty acids indicated a diatom-based nutrition in spring, whereas 22:6(n?3), 16:0, 18:2(n?6) and 18:1(n?9) pointed to a flagellate-based diet during the rest of the year as well as omnivorous/carnivorous low-level feeding during winter. The shorter-chain fatty alcohols 14:0 and 16:0 prevailed, also reflecting biosynthetic processes typical of omnivores or carnivores. Altogether, the lipid signatures characterized P. minutus as an opportunistic feeder. In contrast, O. similis had consistently high amounts of the 18:1(n?9) fatty acid in all stages and during all seasons pointing to a generally omnivorous/carnivorous/detritivorous diet. Furthermore, the fatty alcohol 20:1(n?9) reached high percentages especially in adult females and males, and feeding on Calanus faecal pellets is suggested. Fatty alcohols, as wax ester moieties, revealed significant seasonal variations in O. similis and a seasonal trend towards wax ester accumulation in autumn in P. minutus. P. minutus utilized its lipid deposits for development in the copepodite stages III and IV and for gonad maturation in CV and females during the dark season. However, CVs and females depended on the spring phytoplankton bloom for final maturation processes and reproduction. O. similis fueled gonad maturation and egg production for reproduction in June by wax esters, whereas reproduction in August/September co-occurred with the accumulation of new depot lipids. Both species revealed significantly higher wax ester levels in deeper (>50 m) as compared to surface (0-50 m) dwelling individuals related to a descent prior to overwintering.