915 resultados para HYDRIDE ELECTRODE
Resumo:
A flow injection hydride generation direct current plasma atomic emission spectrometric (FI-HG-DCP-AES) method was developed for the determination of lead at ng.ml-l level. Potassium ferricyanide (K3Fe(CN)6) was used along with sodium tetrahydroborate(III) (NaBH4) to produce plumbane (PbH4) in an acid medium. The design of a gas-liquid separator (hydride generator) was tested and the parameters of the flow injection system were optimized to achieve a good detection limit and sample throughput. The technique developed gave a detection limit of 0.7 ng.ml-l(3ob). The precision at 20 ng.ml"* level was 1.6 % RSD with 1 1 measurements (n=l 1). Volume of sample loop was 500 |J.l. A sample throughput of 120 h"^ was achieved. The transition elements, Fe(II), FeOH), Cd(n), Co(II), Mn(n), Ni(II) and Zn(n) do not interfere in this method but 1 mg,l'l Cu(II) will suppress 50 % of the signal from a sample containing 20 ng.ml'l Pb. This method was successfully applied to determine lead in a calcium carbonate (CaC03) matrix of banded coral skeletons from Si-Chang Island in Thailand.
Resumo:
Modifications to the commercial hydride generator, manufactured by Spectrametrics, resulted in improved operating procedure and enhancement of the arsenic and germanium signals. Experiments with arsenic(III) and arsenic(V) showed that identical reiults could be produced from both oxidation states. However, since arsenic(V) is reduced more slowly than arsenic(III), peak areas and not peak heights must be measured when the arsine is immediately stripped from the system (approximately 5 seconds reaction). When the reduction is allowed to proceed for 20 seconds before the arsine is stripped, peak heights may be used. For a 200 ng/mL solution, the relative standard deviation is 2.8% for As(III) and 3.8% for As(V). The detection limit for arsenic using the modified system is 0.50 ng/mL. Studies performed on As(V) standards show that the interferences from 1000 mg/L of nickel(II), cobalt(II), iron(III), copper(II), cadmium(II), and zinc(II) can be eliminated with the aid of 5 M Hel and 3% L-cystine. Conditions for the reduction of germanium to the corresponding hydride were investigated. The effect of different concentrations of HCl on the reduction of germanium to the covalent hydride in aqueous media by means of NaBH 4 solutions was assessed. Results show that the best response is accomplished at a pH of 1.7. The use of buffer solutions was similarly characterized. In both cases, results showed that the element is best reduced when the final pH of the solution after reaction is almost neutral. In addition, a more sensitive method, which includes the use of (NH4)2S208' has been developed. A 20% increase in the germanium signal is registered when compared to the signal achieved with Hel alone. Moreover, under these conditions, reduction of germanium could be accomplished, even when the solution's pH is neutral. For a 100 ng/mL germanium standard the rsd is 3%. The detection limit for germanium in 0.05 M Hel medium (pH 1.7) is 0.10 ng/mL and 0.09 ng/mL when ammonium persulphate is used in conjunction with Hel. Interferences from 1000 mg/L of iron(III), copper(II), cobalt(II), nickel(II), cadmium(II), lead(II), mercury(II), aluminum(III), tin(IV), arsenic(III), arsenic(V) and zinc(II) were studied and characterized. In this regard, the use of (NH4)ZS20S and Hel at a pH of 1.7 proved to be a successful mixture in the sbppression of the interferences caused by iron, copper, aluminum, tin, lead, and arsenic. The method was applied to the determination of germanium in cherts and iron ores. In addition, experiments with tin(IV) showed that a 15% increase in the tin signal can be accomplished in the presence of 1 mL of (NH4)2S20S 10% (m/V).
Resumo:
A method using L-cysteine for the determination of arsenous acid (As(III)), arsenic acid (As(V)), monomethylarsonic acid (MMAA), and dimethylarsinic acid (DMAA) by hydride generation was demonstrated. The instrument used was a d.c. plasma atomic emission spectrometer (OCP-AES). Complete recovery was reported for As(III), As(V), and DMAA while 86% recovery was reported for MMAA. Detection limits were determined, as arsenic for the species listed previously, to be 1.2, 0.8, 1.1, and 1.0 ngemL-l, respectively. Precision values, at 50 ngemL-1 arsenic concentration, were f.80/0, 2.50/0, 2.6% and 2.6% relative standard deviation, respectively. The L-cysteine reagent was compared directly with the conventional hydride generation technique which uses a potassium iodide-hydrochloric acid medium. Recoveries using L-cysteine when compared with the conventional method provided the following results: similar recoveries were obtained for As(III), slightly better recoveries were obtained for As(V) and MMAA, and significantly better recoveries for DMAA. In addition, tall and sharp peak shapes were observed for all four species when using L-cysteine. The arsenic speciation method involved separation by ion exchange .. high perfonnance liquid chromatography (HPLC) with on-line hydride generation using the L.. cysteine reagent and measurement byOCP-AES. Total analysis time per sample was 12 min while the time between the start of subsequent runs was approximately 20 min. A binary . gradient elution program, which incorporated the following two eluents: 0.01 and 0.5 mM tri.. sodium citrate both containing 5% methanol (v/v) and both at a pH of approximately 9, was used during the separation by HPLC. Recoveries of the four species which were measured as peak area, and were normalized against As(III), were 880/0, 290/0, and 40% for DMAA, MMAA and As(V), respectively. Resolution factors between adjacent analyte peaks of As(III) and DMAA was 1.1; DMAA and MMAA was 1.3; and MMAA and As(V) was 8.6. During the arsenic speciation study, signals from the d.c. plasma optical system were measured using a new photon-signal integrating device. The_new photon integrator developed and built in this laboratory was based on a previously published design which was further modified to reflect current available hardware. This photon integrator was interfaced to a personal computer through an AID convertor. The .photon integrator has adjustable threshold settings and an adjustable post-gain device.
Resumo:
Arsenic, bismuth, germanium, antimony and tin were simultaneously determined by continuous hydride generation and inductively coupled plasma-atomic emission spectrometry . I Hydrides were introduced into four different types of gas-liquid separators. Two of the gas-liquid separators were available in-house. A third was developed for this project and a fourth was based on a design used by CET AC. The best signal intensity was achieved by the type II frit-based gas-liquid separator, but the modified Cetac design gave promise for the future, due to low relative standard deviation. A method was developed for the determination of arsenic, bismuth, antimony and tin in low-alloy steels. Four standard reference materials from NIST were dissolved in 10 mL aqua regia without heat. Good agreement was obtained between experimental values and certified values for arsenic, bismuth, antimony and tin. The method was developed to provide the analyst with the opportunity to determine the analytes by using simple aqueous standards to prepare calibration lines. Within the limits of the samples analyzed, the method developed is independent of matrix.
Resumo:
Analytical methods for the determination of trace amounts of germanium, tin and arsenic were established using hydride generation coupled with direct current plasma atomic emission spectrometry. A continuous gas flowing batch system for the hydride generation was investigated and was applied to the determination of germanium(Ge), tin(Sn), antimony(Sb) and lead(Pb) (Preliminary results suggest that it is also applicable to arsenic)As) ). With this system, the reproducibility of signals was improved and the determination was speeded up, compared with the conventional batch type hydride generation system. Each determination was complete within one minute. Interferences from a number of transition metal ions, especially from Pd(II), Pt(IV), Ni(II), Cu(II), Co(II), and Fe(II, III), have proven to be very serious under normal conditions, in the determination of germanium, tin, and arsenic. These interference effects were eliminated or significantly reduced in the presence of L-cystine or L-cysteine. Thus, a 10-1000 fold excess of Ni(II), Cu(II), Co(II), Fe(II), Pt(IV), Pd(II), etc. can be tolerated without interference, In the presence of L-cystine or L-cysteine, compared with absence of interference reducing agent. The methods for the determination of Ge, Sn, and As were examined by the analyses of standard reference materials. Interference effects from the sample matrix, for example, in transition metal-rich samples, copper, iron and steel, were eliminated by L-cystine (for As and Sn) and by LI cysteine (for Ge). The analysis of a number of standard reference materials gave excellent results of As and Sn contents in agreement with the certified values, showing there was no systematic interference. The detection limits for both germanium and tin were 20 pg ml- I . Preliminary studies were carried out for the determination of antimony and lead. Antimony was found to react with NaBH4, remaInIng from the previous determinations, giving an analytical signal. A reversed injection manner, i.e., injection of the NaBH4 solution prior to the analyte solution was used to avoid uncertainty caused by residual NaBH4 present and to ensure that an excess of NaB H4 was available. A solution of 0.4% L-cysteine was found to reduce the interference from selected transition metal ions, Co(II), Cu(II), Ni(II) and Pt(IV). Hydrochloric acid - hydrogen peroxide, nitric acid - ammonium persulphate, and potassium dichromate malic acid reaction systems for lead hydride generation were compared. The potassium dichromate - malic acid reaction medium proved to be the best with respect to reproducibility and minimal interference. Cu(II), Ni(II), and Fe(II) caused strong interference In lead determinations, which was not reduced by L-cysteine or Lcystine. Sodium citrate, ascorbic acid, dithizone, thiosemicarbazide and penicillamine reduced interferences to some extent. Further interference reduction studies were carried out uSIng a number of amino acids, glycine, alanine, valine, leucine and histidine, as possible interference reducing agents in the determination of germanium. From glycine, alanine, valine to leucine, the interference reduction effect in germanium determinations decreased. Histidine II was found to be very promising In the reduction of interference. In fact, histidine proved more efficient than L-cystine and L-cysteine In the reduction of interference from Ni(II) in the determination of germanium. Signal enhancement by easily ionized elements (EIEs), usually regarded as an interference effect in analysis by DCP-AES, was studied and successfully applied to advantage in improving the sensitivity and detection limit in the determination of As, Ge, Sn, Sb, and Pb. The effect of alkali and alkaline-earth elements on the determination of the above five hydride forming elements was studied. With the appropriate EIE, a signal enhancement of 40-115% was achieved. Linear calibration and good reproducibility were also obtained in the presence of EIEs. III
Resumo:
This thesis describes the synthesis, structural studies, and stoichiometric and catalytic reactivity of novel Mo(IV) imido silylamide (R'N)Mo(R2)(173_RIN-SiR32-H)(PMe3)n (1: Rl = tBu, Ar', Ar; R2 = Cl; R32 = Me2, MePh, MeCl, Ph2, HPh; n = 2; 2: R' = Ar, R2 = SiH2Ph, n = 1) and hydride complexes (ArN)Mo(H)(R)(PMe3)3 (R = Cl (3), SiH2Ph (4». Compounds of type 1 were generated from (R'N)Mo(PMe3)n(L) (5: R' = tBu, Ar', Ar; L = PMe3, r/- C2H4) and chlorohydrosilanes by the imido/silane coupling approach, recently discovered in our group. The mechanism of the reaction of 5 with HSiCh to give (ArN)MoClz(PMe3)3 (8) was studied by VT NMR, which revealed the intermediacy of (ArN)MCh(172 -ArN=SiHCl)(PMe3)z (9). The imido/silyl coupling methodology was transferred to the reactions of 5 with chlorine-free hydrosilanes. This approach allowed for the isolation of a novel ,B-agostic compound (ArN)Mo(SiHzPh)(173 -NAr-SiHPhH)(PMe3) (10). The latter was found to be active in a variety of hydrosilation processes, including the rare monoaddition of PhSiH3 to benzonitrile. Stoichiometric reactions of 11 with unsaturated compounds appear to proceed via the silanimine intermediate (ArN)M(17z-ArN=SiHPh)(PMe3) (12) and, in the case of olefins and nitriles, give products of Si-C coupling, such as (ArN)Mo(R)(173 -NAr-SiHPh-CH=CHR')(PMe3) (13: R = Et, R' = H; 14: R = H, R' = Ph) and (ArN)Mo(172-NAr-SiHPh-CHR=N)(PMe3) (15). Compound 13 was also subjected to catalysis showing much improved activity in the hydrosilation of carbonyls and alkenes. Hydride complexes 3 and 4 were prepared starting from (ArN)MoCh(PMe3)3 (8). Both hydride species catalyze a diversity of hydrosilation processes that proceed via initial substrate activation but not silane addition. The proposed mechanism is supported by stoichiometric reactions of 3 and 4, kinetic NMR studies, and DFf calculations for the hydrosilation of benzaldehyde and acetone mediated by 4.
Resumo:
This thesis describes the synthesis, structural studies, stoichiometric and catalytic reactivity of novel Mo(IV) imido hydride complexes (Cp)(ArN)Mo(H)(PMe3) (1) and (Tp )(ArN)Mo(H)(PMe3) (2). Both 1 and 2 catalyze hydrosilylation of a variety of carbonyls. Detailed kinetic and DFT studies found that 1 reacts by an unexpected associative mechanism, which does not involve Si-H addition either to the imido group or the metal. Despite 1 being a d2 complex, its reaction with PhSiH3 proceeds via a a-bond metathesis mechanism giving the silyl derivative (Cp )(ArN)Mo(SiH2Ph)(PMe3). In the presence of BPh3 reaction of 1 with PhSiH3 results in formation of (Cp)(ArN)Mo(SiH2Ph)(H)2 and (Cp)(ArN)Mo(SiH2Ph)2(H), the first examples ofMo(VI) silyl hydrides. AI: 1 : 1 reaction between 2, PhSiD3 and carbonyl substrate established that hydrosilylation is not accompanied by deuterium incorporation into the hydride position of the catalyst, thus ruling out the conventional mechanism based on carbonyl insertion carbonyl. As 2 is nomeactive to both the silane and ketone, the only mechanistic alternative we are left with is that the metal center activates the carbonyl as a Lewis acid. The analogous nonhydride mechanism was observed for the catalysis by (ArN)Mo(H)(CI)(PMe3), (Ph3P)2(I)(O)Re(H)(OSiMe2Ph) and (PPh3CuH)6. Complex 2 also catalyzes hydroboration of carbonyls and nitriles. We report the first case of metal-catalyzed hydroboration of nitriles as well as hydroboration of carbonyls at very mild conditions. Conversion of carbonyl functions can be performed with high selectivities in the presence of nitrile groups. This thesis also reports the first case of the HlH exchange between H2 and Si-H of silanes mediated by Lewis acids such as Mo(IV) , Re(V) , Cu(I) , Zn(II) complexes, B(C6Fs)3 and BPh3.
Resumo:
A metalloporphyrin incorporated carbon paste sensor has been developed for the determination of metronidazole benzoate (MTZB). Zn(II) complex of 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrin (TMHPP) was used as the active material. The MTZB gave a well-defined reduction peak at - 0.713V in 0.1 mol l -1 phosphate buffer solution of pH around 7. Compared with bare carbon paste electrode (CPE), the TMHPP Zn(II) modified electrode significantly enhanced the reduction peak current of MTZB as well as lowered its reduction potential. Under optimum conditions the reduction peak current was proportional to MTZB concentration over the range 1×10-3 mol1-1 to 1×10-5mol1-1. The detection limit was found to be 4.36×10-6mol1-1 . This sensor has been successfully applied for the determination of MTZB in pharmaceutical formulations and urine samples.
Resumo:
Inter-digital capacitive electrodes working as electric field sensors have been developed for touch panel applications. Evaluation circuits to convert variations in electric fields in such sensors into computer compatible data are commercially available. We report development of an Interdigital capacitive electrode working as a sensitive pressure sensor in the range 0-120 kPa. Essentially it is a touch/proximity sensor converted into a pressure sensor with a suitable elastomer buffer medium acting as the pressure transmitter. The performance of the sensor has been evaluated and reported. Such sensors can be made very economical in comparison to existing pressure sensors. Moreover, they are very convenient to be fabricated into sensor arrays involving a number of sensors for distributed pressure sensing applications such as in biomedical systems.
Resumo:
Photoemission optogalvanaic (POG) effect has been observed by irradiating copper target electrode, in a nitrogen discharge cell using 1.06 μm and frequency doubled 532 nm Nd:YAG laser pulse. Measurement of the nature of the variation of POG signal strength with 532 nm laser fluence confirms the two photon induced photoelectric emission from copper. However, using 1.06 μm laser pulses thermally assisted photoemission is observed.
Resumo:
This thesis consists of a study of the effect of electrode films and overlayer films on the electrical properties of certain metal films. The films have been prepared on glass substrates by thermal evapouration in a vaccum 10 terr. The properties of Al films on Ag, Al,Au and Cu films on In electrodes ,and Bi/Ag bilayer films have been studied. The influence of annealing electrodes at higher temperature on the electrical properties of metal films has also been investigated. Further the effect of varying layer thickness in the bilayer films ,both annealed at higher temperature and annealed at room temperature have been examined.
Resumo:
Voltammetric methods are applicable for the determination of a wide variety of both organic and inorganic species. Its features are compact equipment, simple sample preparation, short analysis time, high accuracy and sensitivity. Voltammetry is especially suitable for laboratories in which only a few parameters have to be monitored with a moderate sample throughput. Of various electrode materials, glassy carbon electrode is particularly useful because of its high electrical conductivity, impermeability to gases, high chemical resistance, reasonable mechanical and dimensional stability and widest potential range of all carbonaceous electrodes. Electrode modification is a vigorous research area by which the electrochemical determination of various analyte species is facilitated. The scope of pharmaceutical analysis includes the analytical investigation of pure drug, drug formulations, impurities and degradation products of drugs, biological samples containing the drugs and their metabolites with the aim of obtaining data that can contribute to the maximal efficacy and maximal safety of drug therapy. This thesis presents the modification of glassy carbon electrode using metalloporphyrin and dyes and subsequently using these modified electrodes for the determination of various pharmaceuticals. The thesis consists of 9 chapters.
Resumo:
The acute hippocampal brain slice preparation is an important in vitro screening tool for potential anticonvulsants. Application of 4-aminopyridine (4-AP) or removal of external Mg2+ ions induces epileptiform bursting in slices which is analogous to electrical brain activity seen in status epilepticus states. We have developed these epileptiform models for use with multi-electrode arrays (MEAs), allowing recording across the hippocampal slice surface from 59 points. We present validation of this novel approach and analyses using two anticonvulsants, felbamate and phenobarbital, the effects of which have already been assessed in these models using conventional extracellular recordings. In addition to assessing drug effects on commonly described parameters (duration, amplitude and frequency), we describe novel methods using the MEA to assess burst propagation speeds and the underlying frequencies that contribute to the epileptiform activity seen. Contour plots are also used as a method of illustrating burst activity. Finally, we describe hitherto unreported properties of epileptiform bursting induced by 100M4-AP or removal of external Mg2+ ions. Specifically, we observed decreases over time in burst amplitude and increase over time in burst frequency in the absence of additional pharmacological interventions. These MEA methods enhance the depth, quality and range of data that can be derived from the hippocampal slice preparation compared to conventional extracellular recordings. It may also uncover additional modes of action that contribute to anti-epileptiform drug effects