980 resultados para HUMAN POSTURAL CONTROL
Resumo:
The purpose of this study was to investigate whether the additional sensory information could improve postural control in individuals with unilateral anterior cruciate ligament (ACL) injury. Twenty-eight individuals with unilateral ACL injury (mean age 23.6, 26 males, 2 females) and 28 healthy young control subjects (mean age 22.1 years, 26 males, 2 females) participated in this study. Postural control was evaluated with subjects single-leg standing on a force platform with eyes closed under two sensory conditions: normal sensory information and light touch to a stationary bar (applied force below 1 N). Three trials of 30 5 were performed in each single-leg stance and in each sensory condition. Mean sway amplitude and predominant frequency of center of pressure were calculated for both anterior-posterior and medial-lateral directions. Individuals with ACL injury showed greater mean sway amplitude than healthy control individuals even though the predominant frequency was similar for both groups. Additional sensory information improved postural control performance in individuals with ACL injury and healthy control, with a greater effect observed for the ACL group. Based on these results, we suggest that reduction in postural control performance in individuals with ACL injury would be due to the reduction of sensory information provided by the ACL, but when sensory information is enhanced, postural control performance improves. These results have implications for novel approaches to improve stability in individuals with ACL injury. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Postural control is needed to perform various daily activities, from staying in one posture, standing, to sports situations. Many studies have shown that sensory systems help to maintain posture stable; acquisition of perceptual information, particularly through head and eye movements, allows static and dynamic equilibrium. Research related to both motor behavior and physical activities such as gymnastics have contributed to a better understanding of complexities involved in human postural control. The purpose of this study was to review the related literature, searching for possible answers on how everyday and sports actions are performed, with respect to the control and maintenance of posture. Its focus was on how the human body acquires information from the sensory systems, vision in special, and how this information acts to support the control of posture and gaze
Resumo:
In humans, when the stability of the trunk is challenged in a controlled manner by repetitive movement of a limb, activity of the diaphragm becomes tonic but is also modulated at the frequency of limb movement. In addition, the tonic activity is modulated by respiration. This study investigated the mechanical output of these components of diaphragm activity. Recordings were made of costal diaphragm, abdominal, and erector spinae muscle electromyographic activity; intra-abdominal, intrathoracic, and transdiaphragmatic pressures; and motion of the rib cage, abdomen, and arm. During limb movement the diaphragm and transversus abdominis were tonically active with added phasic modulation at the frequencies of both respiration and limb movement. Activity of the other trunk muscles was not modulated by respiration. Intra-abdominal pressure was increased during the period of limb movement in proportion to the reactive forces from the movement. These results show that coactivation of the diaphragm and abdominal muscles causes a sustained increase in intra-abdominal pressure, whereas inspiration and expiration are controlled by opposing activity of the diaphragm and abdominal muscles to vary the shape of the pressurized abdominal cavity.
Resumo:
The aim of this study was to examine postural control in children with cerebral palsy performing a bilateral shoulder flexion to grasp a ball from a sitting posture. The participants were 12 typically developing children (control) without cerebral palsy and 12 children with cerebral palsy (CP). We analyzed the effect of ball mass (1 kg and 0.18 kg), postural adjustment (anticipatory, APA, and compensatory, CPA), and groups (control and CP) on the electrical activity of shoulder and trunk muscles with surface electromyography (EMG). Greater mean iEMG was seen in CPA, with heavy ball, and for posterior trunk muscles (p < .05). The children with CP presented the highest EMG and level of co-activation (p < .05). Linear regression indicated a positive relationship between EMG and aging for the control group, whereas that relationship was negative for participants with CP. We suggest that the main postural control strategy in children is based on corrections after the beginning of the movement. The linear relationship between EMG and aging suggests that postural control development is affected by central nervous disease which may lead to an increase in muscle co-activation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP-without concurrent activity of the abdominal or back extensor muscles-produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to similar to 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (similar to6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Addition of a load to a moving upper limb produces a perturbation of the trunk due to transmission of mechanical forces. This experiment investigated the postural response of the trunk muscles in relation to unexpected limb loading. Subjects performed rapid, bilateral shoulder flexion in response to a stimulus. In one third of trials, an unexpected load was added bilaterally to the upper limbs in the first third of the movement. Trunk muscle electromyography, intra-abdominal pressure and upper limb and trunk motion were measured. A short-latency response of the erector spinae and transversus abdominis muscles occurred similar to 50 ms after the onset of the limb perturbation that resulted from addition of the load early in the movement and was coincident with the onset of the observed perturbation at the trunk. The results provide evidence of initiation of a complex postural response of the trunk muscles that is consistent with mediation by afferent input from a site distant to the lumbar spine, which may include afferents of the upper limb.
Resumo:
This study investigated the influence of wearing unstable shoe construction (WUS) on compensatory postural adjustments (CPA) associated with external perturbations. Thirty-two subjects stood on a force platform resisting an anterior-posterior horizontal force applied to a pelvic belt via a cable, which was suddenly released. They stood under two conditions: barefoot and WUS. The electromyographic (EMG) activity of gastrocnemius medialis, tibialis anterior, rectus femoris, biceps femoris, rectus abdominis, and erector spinae muscles and the center of pressure (CoP) displacement were acquired to study CPA. The EMG signal was used to assess individual muscle activity and latency, antagonist co-activation and reciprocal activation at joint and muscle group levels. Compared to barefoot, WUS led to: (1) increased gastrocnemius medialis activity, (2) increased total agonist activity, (3) decreased antagonist co-activation at the ankle joint and muscle group levels, (4) increased reciprocal activation at the ankle joint and muscle group levels, and (5) decrease in all muscle latencies. No differences were observed in CoP displacement between conditions. These findings demonstrate that WUS led to a reorganization of the postural control system associated to improved performance of some components of postural control responses.
Resumo:
Introdução: O controlo postural é base do movimento humano, e pode ser estudado através das tarefas como o levantar e o alcance. Nestas, observam-se frequentemente alterações neuromotoras em indivíduos com défice cognitivo. Objetivo: descrever as alterações na relação entre os segmentos corporais na sequência de movimento levantar-para-alcançar, em adolescentes com défice cognitivo, face à aplicação de um programa de intervenção em fisioterapia baseado no Conceito de Bobath/ Tratamento do Neurodesenvolvimento (TND). Métodos: antes e após a intervenção em fisioterapia, filmou-se as vistas lateral e posterior da sequência de movimento de levantar-para-alcançar, a qual foi posteriormente dividida em 5 fases, para a análise observacional e quantitativa. A análise quantitativa foi realizada através da distância entre tragus-acrómio, crista ilíaca-acrómio, espinha ilíaca postero-superior homolateral-T1, ângulos inferiores da omoplata e ângulo inferior da omoplata homolateral-T1, recorrendo-se ao software de Avaliação Postural - SAPo. Face à avaliação inicial e evolução dos participantes foram estabelecidos planos de intervenção, tendo em conta aspectos como o contexto, a tarefa e a motivação. Resultados: no geral, foram detetadas alterações na relação entre os segmentos corporais na análise observacional e quantitativa, após a intervenção. Conclusão: As alterações na relação entre os segmentos corporais poderão indicar uma possível reorganização motora.
Resumo:
This study aims to compare two methods of assessing the postural phase of gait initiation as to intrasession reliability, in healthy and post-stroke subjects. As a secondary aim, this study aims to analyse anticipatory postural adjustments during gait initiation based on the centre of pressure (CoP) displacements in post-stroke participants. The CoP signal was acquired during gait initiation in fifteen post-stroke subjects and twenty-three healthy controls. Postural phase was identified through a baseline-based method and a maximal displacement based method. In both healthy and post-stroke participants higher intra-class correlation coefficient and lower coefficient of variation values were obtained with the baseline-based method when compared to the maximal displacement based method. Post-stroke participants presented decreased CoP displacement backward and toward the first swing limb compared to controls when the baseline-based method was used. With the maximal displacement based method, there were differences between groups only regarding backward CoP displacement. Postural phase duration in medial-lateral direction was also increased in post-stroke participants when using the maximal displacement based method. The findings obtained indicate that the baseline-based method is more reliable detecting the onset of gait initiation in both groups, while the maximal displacement based method presents greater sensitivity for post-stroke participants.
Resumo:
This study examined the influence of both optic flow characteristics and intention on postural control responses. Two groups of 10 adults each were exposed to the room's movement either at 0.6 cm/s (low velocity group) or 1.0 cm/s (high velocity group). All the participants stood in the upright stance inside of a moving room and were informed about the room movement only after the fourth trial as they were asked to resist to its influence. Results revealed that participants from both groups were influenced by the imposed visual stimulus in the first trials, but the coupling strength was weaker for the high velocity group. The request to resist the visual influences decreased visual influences oil body sway, but only for the low velocity group. These results indicate that intention might play a role in stimulus influences on body sway but it is stimulus dependent.
Resumo:
Introduction: Data describing the relationships between postural alignment and stance stability are scarce and controversial. Objective: The aim of this study was to evaluate the effects of sensory disturbances on knee alignment in upright stance and the effects of knee hyperextension on stance stability. Method: Kinetic and kinematic data of 23 healthy adult women were collected while quietly standing in four sensory conditions. Kinematic data: knee angle (dependent variables) variations were analyzed across sensory conditions. Kinetic data: as subjects with hyperextended knees showed a clear tendency to flex their knees as balance challenge increased, center of pressure (COP) parameters (dependent variables) were analyzed in each sensory condition among trial sub-groups: Aligned-Trials (knee angle < 180°), Hyperextended-Trials (>180°) and Adjusted-Trials (>180° initially, turned <180° under challenging conditions). Results: Differences were found in mean velocity of COP in two conditions showing that knee alignment can affect stance stability. Conclusion: Knee hyperextension is a transient condition changing under postural challenges. Knee hyperextension affected postural control as mean velocity was the highest in the hyperextended group in natural standing sensory condition and lowest with sensory disturbance. © 2009 Elsevier Ltd.
Resumo:
The maintenance of a given body orientation is obtained by the complex relation between sensory information and muscle activity. Therefore, this study purpose was to review the role of visual, somatosensory, vestibular and auditory information in the maintenance and control of the posture. Method. a search by papers for the last 24 years was done in the PubMed and CAPES databases. The following keywords were used: postural control, sensory information, vestibular system, visual system, somatosensory system, auditory system and haptic system. Results. the influence of each sensory system and its integration were analyzed for the maintenance and control of the posture. Conclusion. the literature showed that there is information redundancy provided by sensory channels. Thus, the central nervous system chooses the main source for the posture control.
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Eukaryotic cells actively block entry into mitosis in the presence of DNA damage or incompletely replicated DNA. This response is mediated by signal transduction cascades called cell cycle checkpoints. We show here that the human checkpoint control protein hRAD9 physically associates with two other checkpoint control proteins, hRAD1 and hHUS1. Furthermore, hRAD1 and hHUS1 themselves interact, analogously to their fission yeast homologues Rad1 and Hus1. We also show that hRAD9 is present in multiple phosphorylation forms in vivo. These phosphorylated forms are present in tissue culture cells that have not been exposed to exogenous sources of DNA damage, but it remains possible that endogenous damage or naturally occurring replication intermediates cause the observed phosphorylation. Finally, we show that hRAD9 is a nuclear protein, indicating that in this signal transduction pathway, hRAD9 is physically proximal to the upstream (DNA damage) signal rather than to the downstream, cytoplasmic, cell cycle machinery.