146 resultados para HSC
Resumo:
The main object of this thesis is the analysis and the quantization of spinning particle models which employ extended ”one dimensional supergravity” on the worldline, and their relation to the theory of higher spin fields (HS). In the first part of this work we have described the classical theory of massless spinning particles with an SO(N) extended supergravity multiplet on the worldline, in flat and more generally in maximally symmetric backgrounds. These (non)linear sigma models describe, upon quantization, the dynamics of particles with spin N/2. Then we have analyzed carefully the quantization of spinning particles with SO(N) extended supergravity on the worldline, for every N and in every dimension D. The physical sector of the Hilbert space reveals an interesting geometrical structure: the generalized higher spin curvature (HSC). We have shown, in particular, that these models of spinning particles describe a subclass of HS fields whose equations of motions are conformally invariant at the free level; in D = 4 this subclass describes all massless representations of the Poincar´e group. In the third part of this work we have considered the one-loop quantization of SO(N) spinning particle models by studying the corresponding partition function on the circle. After the gauge fixing of the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which have been computed by using orthogonal polynomial techniques. Finally we have extend our canonical analysis, described previously for flat space, to maximally symmetric target spaces (i.e. (A)dS background). The quantization of these models produce (A)dS HSC as the physical states of the Hilbert space; we have used an iterative procedure and Pochhammer functions to solve the differential Bianchi identity in maximally symmetric spaces. Motivated by the correspondence between SO(N) spinning particle models and HS gauge theory, and by the notorious difficulty one finds in constructing an interacting theory for fields with spin greater than two, we have used these one dimensional supergravity models to study and extract informations on HS. In the last part of this work we have constructed spinning particle models with sp(2) R symmetry, coupled to Hyper K¨ahler and Quaternionic-K¨ahler (QK) backgrounds.
Resumo:
Many age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and polyglutamine disorders, including Huntington’s disease, are associated with the aberrant formation of protein aggregates. These protein aggregates and/or their precursors are believed to be causally linked to the pathogenesis of such protein conformation disorders, also referred to as proteinopathies. The accumulation of protein aggregates, frequently under conditions of an age-related increase in oxidative stress, implies the failure of protein quality control and the resulting proteome instability as an upstream event of proteinopathies. As aging is a main risk factor of many proteinopathies, potential alterations of protein quality control pathways that accompany the biological aging process could be a crucial factor for the onset of these disorders.rnrnThe focus of this dissertation lies on age-related alterations of protein quality control mechanisms that are regulated by the co-chaperones of the BAG (Bcl-2-associated athanogene) family. BAG proteins are thought to promote nucleotide exchange on Hsc/Hsp70 and to couple the release of chaperone-bound substrates to distinct down-stream cellular processes. The present study demonstrates that BAG1 and BAG3 are reciprocally regulated during aging leading to an increased BAG3 to BAG1 ratio in cellular models of replicative senescence as well as in neurons of the aging rodent brain. Furthermore, BAG1 and BAG3 were identified as key regulators of protein degradation pathways. BAG1 was found to be essential for effective degradation of polyubiquitinated proteins by the ubiquitin/proteasome system, possibly by promoting Hsc/Hsp70 substrate transfer to the 26S proteasome. In contrast, BAG3 was identified to stimulate the turnover of polyubiquitinated proteins by macroautophagy, a catabolic process mediated by lysosomal hydrolases. BAG3-regulated protein degradation was found to depend on the function of the ubiquitin-receptor protein SQSTM1 which is known to sequester polyubiquitinated proteins for macroautophagic degradation. It could be further demonstrated that SQSTM1 expression is tightly coupled to BAG3 expression and that BAG3 can physically interact with SQSTM1. Moreover, immunofluorescence-based microscopic analyses revealed that BAG3 co-localizes with SQSTM1 in protein sequestration structures suggesting a direct role of BAG3 in substrate delivery to SQSTM1 for macroautophagic degradation. Consistent with these findings, the age-related switch from BAG1 to BAG3 was found to determine that aged cells use the macroautophagic system more intensely for the turnover of polyubiquitinated proteins, in particular of insoluble, aggregated quality control substrates. Finally, in vivo expression analysis of macroautophagy markers in young and old mice as well as analysis of the lysosomal enzymatic activity strongly indicated that the macroautophagy pathway is also recruited in the nervous system during the organismal aging process.rnrnTogether these findings suggest that protein turnover by macroautophagy is gaining importance during the aging process as insoluble quality control substrates are increasingly produced that cannot be degraded by the proteasomal system. For this reason, a switch from the proteasome regulator BAG1 to the macroautophagy stimulator BAG3 occurs during cell aging. Hence, it can be concluded that the BAG3-mediated recruitment of the macroauto-phagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging. Future studies will explore whether an impairment of this adaptation process may contribute to age-related proteinopathies.
Resumo:
Die Suppression von autoreaktiven T-Zellen ist eine Funktion von CD4+CD25+ regulatorischen T-Zellen (CD4+CD25+ Tregs). CD4+CD25+ Tregs unterdrücken autoaggressive Immunantworten. Galectin-10 und Foxp3 sind wichtige Proteine, die an dem supprimierenden Mechanismus der Tregs beteiligt sind. Galectin-10 ist eines der ältesten bekannten humanen Proteine, die nicht in anderen Spezies gefunden worden sind. Foxp3 ist ein Transkriptionsfaktor, der in menschlichen CD4+CD25+ Tregs und in CD4+CD25- T-Effektor-Zellen nach Aktivierung exprimiert wird. Ein siRNA-vermittelter Knockdown dieses intrazellulären löslichen Proteins hebt die supprimierende Funktion der humanen CD4+CD25+ Tregs auf.rnDiese Arbeit beinhaltet in vitro durchgeführte Untersuchungen zur Ermöglichung eines Knockdown von Galectin-10 und/oder Foxp3 in humanisierten Mäusen. Es war möglich, ein Verfahren für die Produktion von lentiviralen Partikeln zu etablierten, die sich als effizientes Vehikel für den Gentransfer in humane Stammzellen und verschiedene Tumor- und Immunzellen erwiesen. Nach der Transduktion von AML14.3D10 Tumorzellen mit GFP-codierenden lentiviralen Partikeln konnte eine langfristige Expression von GFP erreicht werden. Außerdem war es möglich lentivirale Partikel zu erzeugen, die mit shRNA gegen Galectin-10 codiert waren. Die erzeugten Partikel erwiesen sich als funktionell, indem sie eine deutliche Herunterregulation von Galectin-10 in konstitutiv Galectin-10 exprimierenden AML14.3D10 Tumorzellen bewirkten. Unsere Studie präsentierte außerdem eine erstmalige Untersuchung zum Nachweis von Galectin-10-Protein in Eosinophilen aus humanen CD34+ hämatopoetischen Stammzellen (HSC). Diese stabile in vitro Galectin-10-Expression bietet ein alternatives Untersuchungsmodell zu CD4+CD25+ Tregs, die nicht aus CD34+ HSC differenziert werden können. Der zusätzliche Einbau des GFP-Gens in die mit shRNA gegen Galectin-10 codierende lentivirale Partikel war ein wichtiger Schritt zur Markierung von Zellen, die einen Galectin-10-Knockdown aufwiesen. Die neuen bicistronischen lentiviralen Partikel erwiesen sich sowohl in aus CD34+ HSC differenzierten Eosinophilen als auch in AML14.3D10 Zellen, die einen eosinophilen Phänotyp aufweisen, als funktionell. Schließlich konnte mit den bicistronischen lentiviralen Partikeln, die mit GFP und shRNA gegen Foxp3 codiert waren, eine Herunterregulation von Foxp3 in CD4+CD25- T-Effektor-Zellen erreicht werden, was erneut die erfolgreiche Herstellung von funktionellen lentiviralen Partikeln bewies.rn
Resumo:
Activation of hepatic stellate cells (HSC) and transdifferentiation to myofibroblasts following liver injury is the main culprit for hepatic fibrosis. Myofibroblasts show increased proliferation, migration, contraction, and production of extracellular matrix (ECM). In vitro, HMG-CoA reductase inhibitors (statins) inhibit proliferation and induce apoptosis of myofibroblastic HSC. To investigate the antifibrotic effects of atorvastatin in vivo we used bile duct ligated rats (BDL).
Resumo:
The cannabinoid system (CS) is implicated in the regulation of hepatic fibrosis, steatosis and inflammation, with cannabinoid receptors 1 and 2 (CB1 and CB2) being involved in regulation of pro- and antifibrogenic effects. Daily cannabis smoking is an independent risk factor for the progression of fibrosis in chronic hepatitis C and a mediator of experimental alcoholic steatosis. However, the role and function of CS in alcoholic liver fibrosis (ALF) is unknown so far. Thus, human liver samples from patients with alcoholic liver disease (ALD) were collected for analysis of CB1 expression. In vitro, hepatic stellate cells (HSC) underwent treatment with acetaldehyde, Δ9-tetrahydrocannabinol H(2)O(2), endo- and exocannabinoids (2-arachidonoylglycerol (2-AG) and [THC]), and CB1 antagonist SR141716 (rimonabant). In vivo, CB1 knockout (KO) mice received thioacetamide (TAA)/ethanol (EtOH) to induce fibrosis. As a result, in human ALD, CB1 expression was restricted to areas with advanced fibrosis only. In vitro, acetaldehyde, H(2)O(2), as well as 2-AG and THC, alone or in combination with acetaldehyde, induced CB1 mRNA expression, whereas CB1 blockage with SR141716 dose-dependently inhibited HSC proliferation and downregulated mRNA expression of fibrosis-mediated genes PCα1(I), TIMP-1 and MMP-13. This was paralleled by marked cytotoxicity of SR141716 at high doses (5-10 μmol/L). In vivo, CB1 knockout mice showed marked resistance to alcoholic liver fibrosis. In conclusion, CB1 expression is upregulated in human ALF, which is at least in part triggered by acetaldehyde (AA) and oxidative stress. Inhibition of CB1 by SR141716, or via genetic knock-out protects against alcoholic-induced fibrosis in vitro and in vivo.
Resumo:
Specialized microenvironments have been known to strongly influence stem cell fate in hematopoiesis. The interplay between osteolineage cells, specifically the mature osteoblast, and the hematopoietic stem cell (HSC) niche have been of particular note. Recently, preliminary unpublished data obtained in the Scadden laboratory suggests the critical role of the osteoblast in regulating T cells. The goal of this project was to initially determine whether stimulating the osteoblast in the HSC niche leads to increased immune reconstitution after hematopoietic stem cell transplant (HSCT). These results indicated that while bone manipulation pre-transplant may have a positive effect on T and B lymphocyte cell recovery, bone manipulation post-transplant seems to have a suppressing effect. Additionally, stimulation of the osteoblast may have an inhibitory effect on the regeneration of GR1+ myeloid cells. Based on these results, we then sought to determine how osteoprotection pre-HSCT modifies the kinetics of graft-versus-host disease (GVHD) and impacts the regeneration of immune cells. The data from this phase of my experiment suggests a possible immediate benefit in stimulation of the osteoblast in response to GVHD prior to HSCT. The overall results from my thesis project demonstrate a promising relationship between pre-HSCT stimulation of the osteoblast and lymphocyte recovery post-HSCT. ¿
Resumo:
Treatment plants that operate either thermophilic or mesophilic anaerobic digesters with centrifugal dewatering processes have consistently observed densities of fecal coliform and Escherichia coli, both indicator bacteria, that decrease during digestion but then increase after dewatering and storage. The increases have been characterized as two separate phenomena to explain this observation: 1) “Sudden Increase,” or SI, which is defined as the increase that occurs immediately after dewatering and 2) “regrowth,” which is defined as an increase during storage of cake samples over a period of hours or days. The SI observation appears to be more prevalent with biosolids that are generated with thermophilic processes and dewatered by centrifugation. Both thermophilic and mesophilic digesters with centrifuge dewatering processes have observed the regrowth phenomena. This research hypothesizes that the SI phenomenon is due to the presence of viable nonculturable (VNC) bacteria that are reactivated during dewatering. In other words, the bacteria were always present but were not enumerated by standard culturing methods (SCM). Analysis of the E. coli density in thermally treated solids by SCMs and quantitative real-time polymerase chain reaction (qPCR) indicated that E. coli densities are often underestimated by SCM. When analyzed with qPCR, the E. coli density after digestion can be 4-5 orders of magnitude greater than the non-detect levels identified by SCMs, which supports the non-culturable hypothesis. The VNC state describes a condition where bacteria are alive but unable to sustain the metabolic process needed for cellular division. Supplements added to culturing media were investigated to determine if the resuscitation of VNC bacteria could be enhanced. The autoinducer molecules Nhexanoyl- L-Homoserine lactone (C6-HSL), 3-oxo-N-octanoyl-L-Homoserine lactone (3-oxo- C8-HSL), and norepinephrine were unable to induce the resuscitation of VNC E. coli. Additional sampling was performed to determine if autoinducer molecules, peroxides, or other as of yet unknown inhibitory agents and toxins could be removed from biosolids during SCM. Culture media supplemented with the peroxide degrading compounds catalase, α-ketoglutaric acid, and sodium pyruvate was unable to resuscitate non-culturable E. coli. The additions of bentonite and exponential growth phase E. coli cell-free supernatant to culturing media were also unable to increase the culturability of E. coli. To remove inhibitory agents and toxins, a cell washing technique was employed prior to performing SCM; however, this cell washing technique may have increased cellular stresses that inhibited resuscitation since cell densities decreased. A novel laboratory-scale dewatering process was also investigated to determine if the SI and regrowth phenomena observed in full-scale centrifugal dewatering could be mimicked in the laboratory using a lab shearing device. Fecal coliform and E. coli densities in laboratory prepared cake samples were observed to be an order of magnitude higher than full-scale dewatered cakes. Additionally, the laboratory-scale dewatering process was able to resuscitate fecal coliforms and E. coli in stored sludge such that the density increased by 4-5 orders of magnitude from nondetect values. Lastly, the addition of aluminum sulfate during centrifuge dewatering at a full-scale utility produced an increased regrowth of fecal coliforms and E. coli that was sustained for 5 days.
Resumo:
BACKGROUND: Scientific progress in the biology of hematopoietic stem cells (HSCs) provides opportunities for advances in therapy for different diseases. While stem cell sources such as umbilical cord blood (UCB) are unproblematic, other sources such as human embryonic stem cells (hESCs) raise ethical concerns. STUDY DESIGN AND METHODS: In a prospective survey we established the ethical acceptability of collection, research, and therapy with UCB HSCs versus hESCs among health care professionals, pregnant women, patients undergoing in vitro fertilization therapy, parents, and HSC donors and recipients in Switzerland. RESULTS: There was overall agreement about an ethical justification for the collection of UCB for research and therapy in the majority of participants (82%). In contrast, research and therapy with hESCs was acceptable only by a minority (38% of all responders). The collection of hESCs solely created for HSC collection purposes met overall with the lowest approval rates. Hematologists displayed among the participants the highest acceptance rates for the use of hESCs with 55% for collection, 63% for research, and 73% for therapy. CONCLUSIONS: This is the first study assessing the perception of hESCs for research and therapy in comparison with UCB HSCs in different target groups that are exposed directly, indirectly, or not at all to stem cell-based medicine. Our study shows that the debate over the legitimacy of embryo-destructive transplantation medicine is far from over as particularly hESC research continues to present an ethical problem to an overwhelming majority among laypersons and even among health care professionals.
Oral imatinib treatment reduces early fibrogenesis but does not prevent progression in the long term
Resumo:
BACKGROUND/AIMS: Transactivated hepatic stellate cells (HSCs) represent the key source of extra cellular matrix (ECM) in fibrotic liver. Imatinib, a potent inhibitor of the PDGF receptor tyrosine kinase, reduces HSC proliferation and fibrogenesis when treatment is initiated before fibrosis has developed. We tested the antifibrotic potential of imatinib in ongoing liver injury and in established fibrosis. METHODS: BDL-rats were gavage fed with 20 mg/kg/d imatinib either early (days 0-21) or late (days 22-35) after BDL. Untreated BDL-rats served as controls. ECM and activated HSCs were quantified by morphometry. Tissue activity of MMP-2 was determined by gelatin zymography. mRNA expression of TIMP-1 and procollagen alpha1(I) were measured by RT-PCR. Liver tissue concentration of imatinib was measured by tandem mass spectrometry. RESULTS: Early imatinib reduced ECM formation by 30% (P=0.0455) but left numbers of activated HSCs and procollagen I expression unchanged. MMP-2 activity and TIMP-1 expression were reduced by 50%. Late imatinib treatment did not alter histological or molecular markers of fibrogenesis despite high imatinib tissue levels. CONCLUSIONS: The antifibrotic effectiveness of imatinib is limited to the early phase of fibrogenesis. In ongoing liver injury other mediators most likely compensate for the inhibited PDGF effect.
Resumo:
Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.
Resumo:
BACKGROUND: Periodontitis has been identified as a potential risk factor in cardiovascular diseases. It is possible that the stimulation of host responses to oral infections may result in vascular damage and the inducement of blood clotting. The aim of this study was to assess the role of periodontal infection and bacterial burden as an explanatory variable to the activation of the inflammatory process leading to acute coronary syndrome (ACS). METHODS: A total of 161 consecutive surviving cases admitted with a diagnosis of ACS and 161 control subjects, matched with cases according to their gender, socioeconomic level, and smoking status, were studied. Serum white blood cell (WBC) counts, high- and low-density lipoprotein (HDL/LDL) levels, high-sensitivity C-reactive protein (hsC-rp) levels, and clinical periodontal routine parameters were studied. The subgingival pathogens were assayed by the checkerboard DNA-DNA hybridization method. RESULTS: Total oral bacterial load was higher in the subjects with ACS (mean difference: 17.4x10(5); SD: 10.8; 95% confidence interval [CI]: 4.2 to 17.4; P<0.001), and significant for 26 of 40 species including Porphyromonas gingivalis, Tannerella forsythensis, and Treponema denticola. Serum WBC counts, hsC-rp levels, Streptococcus intermedius, and Streptococcus sanguis, were explanatory factors to acute coronary syndrome status (Nagelkerke r2=0.49). CONCLUSION: The oral bacterial load of S. intermedius, S. sanguis, Streptococcus anginosus, T. forsythensis, T. denticola, and P. gingivalis may be concomitant risk factors in the development of ACS.
Resumo:
Early prenatal diagnosis and in utero therapy of certain fetal diseases have the potential to reduce fetal morbidity and mortality. The intrauterine transplantation of stem cells provides in some instances a therapeutic option before definitive organ failure occurs. Clinical experiences show that certain diseases, such as immune deficiencies or inborn errors of metabolism, can be successfully treated using stem cells derived from bone marrow. However, a remaining problem is the low level of engraftment that can be achieved. Efforts are made in animal models to optimise the graft and study the recipient's microenvironment to increase long-term engraftment levels. Our experiments in mice show similar early homing of allogeneic and xenogeneic stem cells and reasonable early engraftment of allogeneic murine fetal liver cells (17.1% donor cells in peripheral blood 4 weeks after transplantation), whereas xenogeneic HSC are rapidly diminished due to missing self-renewal and low differentiation capacities in the host's microenvironment. Allogeneic murine fetal liver cells have very good long-term engraftment (49.9% donor cells in peripheral blood 16 weeks after transplantation). Compared to the rodents, the sheep model has the advantage of body size and gestation comparable to the human fetus. Here, ultrasound-guided injection techniques significantly decreased fetal loss rates. In contrast to the murine in utero model, the repopulation capacities of allogeneic ovine fetal liver cells are lower (0.112% donor cells in peripheral blood 3 weeks after transplantation). The effect of MHC on engraftment levels seems to be marginal, since no differences could be observed between autologous and allogeneic transplantation (0.117% donor cells vs 0.112% donor cells in peripheral blood 1 to 2 weeks after transplantation). Further research is needed to study optimal timing and graft composition as well as immunological aspects of in utero transplantation.
Resumo:
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.
Resumo:
BACKGROUND/AIMS: Nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver (NAFL) have a different prognosis and should be dealt with differently. The pathogenesis of NASH implicates the overexpression of cytochrome P450 2E1 (CYP2E1). We investigated whether the noninvasive determination of CYP2E1 activity could replace a liver biopsy in order to differentiate NASH from NAFL. METHOD: Forty patients referred for suspicion of NASH underwent liver biopsy. In these patients, CYP2E1 activity was determined noninvasively by the 6-hydroxychlorzoxazone/chlorzoxazone (CHZ) ratio (CHZ test). Expression of CYP2E1 on liver slides was assessed by immunohistochemistry, and immunostaining for smooth muscle actin was used to assess the activation of hepatic stellate cells (HSC). RESULTS: Thirty patients with NASH were compared with 10 subjects with NAFL. No statistically significant difference could be identified for the clinical and biochemical parameters between the two groups. In the histology, steatosis was more important in NASH than in NAFL (P<0.0001). There was no difference either in the activity (CHZ test) or in the expression of CYP2E1 (immunohistochemistry) between patients with NASH and patients with NAFL. The degree of HSC activation was also comparable between the two groups. A positive and significant correlation was found between the activity of CYP2E1 and body mass index (P<0.001) as well as with the degree of steatosis (P=0.008). CONCLUSION: For patients suspected to have NASH, noninvasive tests including the determination of the CYP2E1 activity are unable to distinguish them from patients with steatosis.
Resumo:
OBJECTIVE: The mortality rate in paediatric intensive care units (PICU) has fallen over the last two decades. More advanced treatment is offered to children with life-threatening disease and there is substantial interest in knowing whether long term outcome and quality of life after intensive care are acceptable. SETTING: 12-bed paediatric and neonatal intensive care unit. INTERVENTION: Prospective follow-up study with telephone interview 1 and 2 years after discharge. METHODS: Four domains of quality of life (physical function, role function, social-emotional function and health problem) were recorded by calculating the health state classification (HSC) index. Outcome was classified good (HSC 1.0-0.7), moderate (HSC 0.69-0.3), poor (HSC 0.29-0) and very poor (HSC <0). RESULTS: 661 patients were admitted to the PICU in the year 2001 with a mortality within the unit of 3.9%. Over 2 years follow-up there were 21 additional deaths (3.2%). 574 patients could be followed up after 1 year and 464 patients after 2 years. After two years the outcome was good in 77%, moderate in 15% and poor in 8%. Patients with respiratory disease had the best outcome, similar to those admitted for neurological and medical reasons. Patients admitted for postoperative care and for cardiovascular disease had a poorer quality of life. 31% of the children had preexisting health care problems and 21% of all patients had new chronic disease after intensive care. CONCLUSION: The majority of survivors admitted to the PICU have a good outcome. The overall mortality rate doubled if assessed two years after discharge.