886 resultados para HOUSE-DUST ENDOTOXIN
Resumo:
Poem
Resumo:
Many Brisbane houses were affected by water inundation as a result of the flooding event which occurred in January 2011. The combination of waterlogged materials and large amounts of silt and organic debris in affected homes gave rise to a situation where exposures to airborne particles and dust could potentially be elevated. However, swift action to remove wet materials can help to reduce moisture and humidity in flooded houses, in an effort to improve indoor air quality in and around flooded areas. In order to gain an understanding of the effect of flooding on the concentration of inorganic elements in indoor dust, field measurements were carried out during 21 March and 3 May, 2011.
Resumo:
The Old Government House, a former residence of the Queen’s representatives in Brisbane, Australia, symbolises British cultural heritage of Colonial Queensland. Located on the campus of the Queensland University of Technology, it is one of the oldest surviving examples of a stately residence in Queensland. Built in 1860s, the Old Government House was originally intended as a temporary residence for the first governor of the newly independent colony of Queensland. However, it remained the vice-regal residence until 1909, serving eleven succeeding governors. Nearly seven decades later, it became the first building in Queensland to be protected under heritage legislation. Thus its importance, as an excellent exemplar that demonstrates the significance of cultural heritage, was established. The Old Government House has survived 150 years of restoration work, refurbishments, and additions. Through these years, it has served the people of Queensland in a multitude of roles. This paper aims to investigate the survival of heritage listed buildings through their adaptive re-use. Its focus will be on the adaptive reuse of the Old Government House through its refurbishments and additions over a period of 150 years. Through a qualitative research process this paper will endeavour to establish the significance of restoration work on the Old Government house; the new opportunities that has opened up as a result of the restoration work; the continued maintenance and management of the building through adaptive re-use; the economic benefits of restoration work; and its contribution to the on-going interest in the preservation of the Tangible Cultural Heritage.
Resumo:
22 mins documentary
Resumo:
With the increasing number of stratospheric particles available for study (via the U2 and/or WB57F collections), it is essential that a simple, yet rational, classification scheme be developed for general use. Such a scheme should be applicable to all particles collected from the stratosphere, rather than limited to only extraterrestial or chemical sub-groups. Criteria for the efficacy of such a scheme would include: (a) objectivity , (b) ease of use, (c) acceptance within the broader scientific community and (d) how well the classification provides intrinsic categories which are consistent with our knowledge of particle types present in the stratosphere.
Resumo:
Samples of a large (~60 µm) chondritic porous (CP) aggregate collected from the stratosphere have been analysed in detail by analytical electron microscopy (AEM). Previous studies of CP aggregates have shown that they are extraterrestrial in origin1–3 and may be related to cometary debris4. CP aggregates are dissimilar to C1 and C2 carbonaceous chondrite matrices and many have not been significantly altered by thermal or radiation processes since their assembly5. We report here a high concentration of Bi2O3 grains within the large CP aggregate designated W7029* A (~60 µm) and suggest they formed by rapid heating (~300 °C) of elemental Bi grains within the aggregate during atmospheric entry. We examine the possibilities for terrestrial Bi contamination of CP aggregate W7029* A but judge them unlikely. Enrichment of elemental Bi within components of extraterrestrial materials is consistent with a nebula condensation model6 and implies that Bi within CP aggregate W7029* A may have formed at a late stage of the condensation process.
Resumo:
Several investigators have recently proposed classification schemes for stratospheric dust particles [1-3]. In addition, extraterrestrial materials within stratospheric dust collections may be used as a measure of micrometeorite flux [4]. However, little attention has been given to the problems of the stratospheric collection as a whole. Some of these problems include: (a) determination of accurate particle abundances at a given point in time; (b) the extent of bias in the particle selection process; (c) the variation of particle shape and chemistry with size; (d) the efficacy of proposed classification schemes and (e) an accurate determination of physical parameters associated with the particle collection process (e.g. minimum particle size collected, collection efficiency, variation of particle density with time). We present here preliminary results from SEM, EDS and, where appropriate, XRD analysis of all of the particles from a collection surface which sampled the stratosphere between 18 and 20km in altitude. Determinations of particle densities from this study may then be used to refine models of the behavior of particles in the stratosphere [5].
Resumo:
Particle collections from the stratosphere via either the JSC Curatorial Program or the U2 Program (NASA Ames) occur between 16km and 19km altitude and are usually part of ongoing experiments to measure parameters related to the aerosol layer. Fine-grained aerosols (<0.1µm) occur in the stratosphere up to 35km altitude and are concentrated between 15km and 25km altitude[1]. All interplanetary dust particles (IDP's) from these stratospheric collections must pass through this aerosol layer before reaching the collection altitude. The major compounds in this aerosol layer are sulfur rich particulates (<0.1µm) and gases and include H2S04, OCS, S02 and CS2 [2].In order to assess possible surface reactions of interplanetary dust particles (IDP's) with ambient aerosols in the stratosphere, we have initiated a Surface Auger Microprobe (SAM) and electron microscope study of selected particles from the JSC Cosmic Dust Collection.
Resumo:
The application of epoxy embedding and microtomy to individual chondritic interplanetary dust particles (lOP's)(Bradley and Brownlee, 1986a) provides not only higher precision in thin-film elemental analyses (Bradley and Brownlee, 19861:1), but also allows a wealth of other important techniques for the micro-characterization of these primitive extraterrestrial materials. For example, individual sections (e.g. 100 nm thick) or a series of sections, can be examined using image analysis techniques which utilize either transmitted or scanned secondary electron images, or alternatively, secondary X-ray spectra collected concurrently from a given region of sample. Individual particles, or groups of particles with similar image characteristics can then be rapidly identified using conventional grey-scale/particle recognition techniques for each microtomed section of lOP. This type of image analysis provides a suitable method for determination of particle size and shape distribution as well as porosity throughout the aggregate.
Resumo:
From a mineralogical survey of approximately 30 chondritic micrometeorites collected from the lower stratosphere and studied in detail using current electron microscopy techniques, it is concluded that these particles represent a unique group of extraterrestrial materials. These micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class. Electron microscope investigations of chondritic micrometeorites have established that these materials (1) are extraterrestrial in origin, (2) existed in space as small objects, (3) endured minimal alteration by planetary processes since formation, and (4) can suffer minimal pulse heating (<600°C) on entering earth's atmosphere. The probable sources for chondritic interplanetary dust particles (IDPs) are cometary and asteroidal debris and, perhaps to a lesser extent, interstellar regions. These sources have not been conclusively linked to any specific mineralogical subset of IDP, although the chondritic porous (CP) aggregate is considered of likely cometary origin. Chondritic IDPs occur in two predominant mineral assemblages: (1) carbonaceous phases and phyllosilicates and (2) carbonaceous phases and nesosilicates or inosilicates, although particles with both types of silicate assemblages are observed. Olivines, pyroxenes, layer silicates, and carbon-rich phases are the most commonly occurring minerals in many chondritic IDPs. Other phases often observed in variable proportions include sulphides, spinels, metals, metal carbides, carbonates, and minor amounts of sulphates and phosphates. Individual mineral grain sizes range from micrometers (primarily pyroxenes and olivines) to nanometers, with the predominant size for all phases less than 100 nm. Specific mineral characteristics for particular chondritic IDPs provide an indication of processes which may have occurred prior to collection in the earth's stratosphere. For example, pyroxene mineralogy in some chondritic aggregates is consistent with condensation from a vapor phase and, we consider, with condensation in a turbulent solar nebula at relatively low temperatures (<1000°C). Carbonaceous phases present in other CP aggregates have been used to imply low-temperature formation processes such as Fischer-Tropsch synthesis (∼530°C) or carbonization and graphitization (∼315°C). Alteration processes have been implicated in the formation of some layer silicates in CP aggregates and may have involved hydrocryogenic alteration at <0°C. In general, interpretations of transformation processes on submicrometer-size minerals in chondritic IDPs are consistent with formation at a radius equivalent to the asteroid belt or greater during the later stages of solar nebula evolution using currently available models.
Resumo:
In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a var ...