928 resultados para HEVC Performance Modelling
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Industrial
Resumo:
Modelling of ventilation is strongly dependent on the physical characteristics of the building of which precise evaluation is a complex and time consuming task. In the frame of a research project, two children day care centres (CDCC) have been selected in order to measure the envelope air permeability, the flow rate of mechanical ventilation systems and indoor and outdoor temperature. The data obtained was used as input to the computer code CONTAM for ventilation simulations. The results obtained were compared with direct measurements of ventilation flow from short term measurements with CO2 tracer gas and medium term measurements with perfluorocarbon tracer (PFT) gas decay method. After validation, in order to analyse the main parameters that affect ventilation, the model was used to predict the ventilation rates for a wide range of conditions. The purpose of this assessment was to find the best practices to improve natural ventilation. A simple analytical method to predict the ventilation flow rate of rooms is also presented. The method is based on the estimation of wind effect on the room through the evaluation of an average factor and on the assessment of relevant cross section of gaps and openings combined in series or in parallel. It is shown that it may be applied with acceptable accuracy for this type of buildings when ventilation is due essentially to wind action.
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Resumo:
This thesis proposes a methodology for modelling business interoperability in a context of cooperative industrial networks. The purpose is to develop a methodology that enables the design of cooperative industrial network platforms that are able to deliver business interoperability and the analysis of its impact on the performance of these platforms. To achieve the proposed objective, two modelling tools have been employed: the Axiomatic Design Theory for the design of interoperable platforms; and Agent-Based Simulation for the analysis of the impact of business interoperability. The sequence of the application of the two modelling tools depends on the scenario under analysis, i.e. whether the cooperative industrial network platform exists or not. If the cooperative industrial network platform does not exist, the methodology suggests first the application of the Axiomatic Design Theory to design different configurations of interoperable cooperative industrial network platforms, and then the use of Agent-Based Simulation to analyse or predict the business interoperability and operational performance of the designed configurations. Otherwise, one should start by analysing the performance of the existing platform and based on the achieved results, decide whether it is necessary to redesign it or not. If the redesign is needed, simulation is once again used to predict the performance of the redesigned platform. To explain how those two modelling tools can be applied in practice, a theoretical modelling framework, a theoretical Axiomatic Design model and a theoretical Agent-Based Simulation model are proposed. To demonstrate the applicability of the proposed methodology and/or to validate the proposed theoretical models, a case study regarding a Portuguese Reverse Logistics cooperative network (Valorpneu network) and a case study regarding a Portuguese construction project (Dam Baixo Sabor network) are presented. The findings of the application of the proposed methodology to these two case studies suggest that indeed the Axiomatic Design Theory can effectively contribute in the design of interoperable cooperative industrial network platforms and that Agent-Based Simulation provides an effective set of tools for analysing the impact of business interoperability on the performance of those platforms. However, these conclusions cannot be generalised as only two case studies have been carried out. In terms of relevance to theory, this is the first time that the network effect is addressed in the analysis of the impact of business interoperability on the performance of networked companies and also the first time that a holistic approach is proposed to design interoperable cooperative industrial network platforms. Regarding the practical implications, the proposed methodology is intended to provide industrial managers a management tool that can guide them easily, and in practical and systematic way, in the design of configurations of interoperable cooperative industrial network platforms and/or in the analysis of the impact of business interoperability on the performance of their companies and the networks where their companies operate.
Resumo:
The dearth of knowledge on the load resistance mechanisms of log houses and the need for developing numerical models that are capable of simulating the actual behaviour of these structures has pushed efforts to research the relatively unexplored aspects of log house construction. The aim of the research that is presented in this paper is to build a working model of a log house that will contribute toward understanding the behaviour of these structures under seismic loading. The paper presents the results of a series of shaking table tests conducted on a log house and goes on to develop a numerical model of the tested house. The finite element model has been created in SAP2000 and validated against the experimental results. The modelling assumptions and the difficulties involved in the process have been described and, finally, a discussion on the effects of the variation of different physical and material parameters on the results yielded by the model has been drawn up.
Resumo:
A single supply chain management (SCM) practice will have a certain impact on organizational performance(OP). However, since it is placed in a system that many other practices are conducted simultaneously, the practice itself will interact with other ones and have a greater impact on OP. This mechanism is named the "resonant" influence. The technique of Structural equation modelling (SEM) was used to test the above mechanism with data collected from Vietnamese garment enterprises. The tcst results showed that the model without mutual interaction among SCM practices could explain 42.8%, 26.3% and 34% variance of operational performance, customer satisfaction and financial performance. While the one containing this interaction is capable to explain 69.5%, 33.1% and 57.3%, respectively.
Resumo:
The performance of parts produced by Free Form Extrusion (FFE), an increasingly popular additive manufacturing technique, depends mainly on their dimensional accuracy, surface quality and mechanical performance. These attributes are strongly influenced by the evolution of the filament temperature and deformation during deposition and solidification. Consequently, the availability of adequate process modelling software would offer a powerful tool to support efficient process set-up and optimisation. This work examines the contribution to the overall heat transfer of various thermal phenomena developing during the manufacturing sequence, including convection and radiation with the environment, conduction with support and between adjacent filaments, radiation between adjacent filaments and convection with entrapped air. The magnitude of the mechanical deformation is also studied. Once this exercise is completed, it is possible to select the material properties, process variables and thermal phenomena that should be taken in for effective numerical modelling of FFE.
Resumo:
In this study, we concentrate on modelling gross primary productivity using two simple approaches to simulate canopy photosynthesis: "big leaf" and "sun/shade" models. Two approaches for calibration are used: scaling up of canopy photosynthetic parameters from the leaf to the canopy level and fitting canopy biochemistry to eddy covariance fluxes. Validation of the models is achieved by using eddy covariance data from the LBA site C14. Comparing the performance of both models we conclude that numerically (in terms of goodness of fit) and qualitatively, (in terms of residual response to different environmental variables) sun/shade does a better job. Compared to the sun/shade model, the big leaf model shows a lower goodness of fit and fails to respond to variations in the diffuse fraction, also having skewed responses to temperature and VPD. The separate treatment of sun and shade leaves in combination with the separation of the incoming light into direct beam and diffuse make sun/shade a strong modelling tool that catches more of the observed variability in canopy fluxes as measured by eddy covariance. In conclusion, the sun/shade approach is a relatively simple and effective tool for modelling photosynthetic carbon uptake that could be easily included in many terrestrial carbon models.
Resumo:
The cyclic load triaxial test is a laboratory test that allows studying the mechanical behaviour of unbound granular materials used in base/subbase layers of road pavements. The resilient modulus and permanent strains are required as inputs in structural pavement design. This paper presents some results obtained for recycled materials (crushed concrete aggregate and blended crushed waste aggregate), with a view to promoting their use in pavement structures. Results relating to a reference material (limestone) are also presented, for comparison. All the test results discussed in this paper were obtained in variable cyclic radial pressure (VCP) tests. The tests performed (VCP) aim to study the influence of water content on the resilient modulus of recycled materials, as well as on the resistance to permanent deformation. Using the experimental data as a basis, further modelling work was carried out to establish the stresses developing in base/capping layers in typical Belgian road pavements. These numerical results allow to propose some simplifications of the stress paths applied in the testing procedures and to establish a new test protocol that also considers compaction during construction works. The results of this research work provide an excellent set of findings for the mechanical characterization of unbound base materials through the cyclic triaxial test, and contribute to a better understanding and correct application of recycled materials under geotechnical engineering background
Resumo:
This project will develop a modelling framework to explain changes in income-related health inequalities and benchmark the performance of Scotland in tackling income-related health inequalities, both over time and relative to that of England and Wales.
Resumo:
The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.
Resumo:
In this paper we propose a parsimonious regime-switching approach to model the correlations between assets, the threshold conditional correlation (TCC) model. This method allows the dynamics of the correlations to change from one state (or regime) to another as a function of observable transition variables. Our model is similar in spirit to Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not suffer from the course of dimensionality. In particular, estimation of the parameters of the TCC involves a simple grid search procedure. In addition, it is easy to guarantee a positive definite correlation matrix because the TCC estimator is given by the sample correlation matrix, which is positive definite by construction. The methodology is illustrated by evaluating the behaviour of international equities, govenrment bonds and major exchange rates, first separately and then jointly. We also test and allow for different parts in the correlation matrix to be governed by different transition variables. For this, we estimate a multi-threshold TCC specification. Further, we evaluate the economic performance of the TCC model against a constant conditional correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that threshold correlation modelling gives rise to a significant reduction in portfolio´s variance.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
Contamination of weather radar echoes by anomalous propagation (anaprop) mechanisms remains a serious issue in quality control of radar precipitation estimates. Although significant progress has been made identifying clutter due to anaprop there is no unique method that solves the question of data reliability without removing genuine data. The work described here relates to the development of a software application that uses a numerical weather prediction (NWP) model to obtain the temperature, humidity and pressure fields to calculate the three dimensional structure of the atmospheric refractive index structure, from which a physically based prediction of the incidence of clutter can be made. This technique can be used in conjunction with existing methods for clutter removal by modifying parameters of detectors or filters according to the physical evidence for anomalous propagation conditions. The parabolic equation method (PEM) is a well established technique for solving the equations for beam propagation in a non-uniformly stratified atmosphere, but although intrinsically very efficient, is not sufficiently fast to be practicable for near real-time modelling of clutter over the entire area observed by a typical weather radar. We demonstrate a fast hybrid PEM technique that is capable of providing acceptable results in conjunction with a high-resolution terrain elevation model, using a standard desktop personal computer. We discuss the performance of the method and approaches for the improvement of the model profiles in the lowest levels of the troposphere.