982 resultados para HEAT TREATMENTS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Native enzymes play a significant role in proteolysis of milk during storage. This is significant for heat resistant native enzymes. Plasmin is one of the most heat resistant enzymes found in milk. It has been reported to survive several heat treatments, causing spoilage during storage. The aim of this study was to assess susceptibility of high temperature heated milk to proteolysis by native enzymes. The trinitrobenzene sulphonic acid (TNBS) method was used for this purpose. Raw milk was heated at 110, 120, 130,142°C for 2 s and 85°C for 15 s and milk processed at low temperature (85°C /15s) was selected to mimic pasteurisation. TNBS method confirmed that raw milk and milk processed at 85°C /15s were the most proteolysed, whereas treatment of milk at high temperatures (110, 120, 130 and 142°C for 2 s) inactivated the native enzymes. It may thus be concluded that high temperature processing positively affects proteolysis by lowering its susceptibility to spoilage during storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%,46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a sol-gel route was used to prepare Y(0.9)Er(0.1)Al(3)(BO(3))(4) glassy thin films by spin-coating technique looking for the preparation and optimization of planar waveguides for integrated optics. The films were deposited on silica and silicon substrates using stable sols synthesized by the sol-gel process. Deposits with thicknesses ranging between 520 and 720 nm were prepared by a multi-layer process involving heat treatments at different temperatures from glass transition to the film crystallization and using heating rates of 2 degrees C/min. The structural characterization of the layers was performed by using grazing incidence X-ray diffraction and Raman spectroscopy as a function of the heat treatment. Microstructural evolution in terms of annealing temperatures was followed by high resolution scanning electron microscopy and atomic force microscopy. Optical transmission spectra were used to determine the refractive index and the film thicknesses through the envelope method. The optical and guiding properties of the films were studied by m-line spectroscopy. The best films were monomode with 620 nm thickness and a refractive index around 1.664 at 980 nm wavelength. They showed good waveguiding properties with high light-coupling efficiency and low propagation loss at 632.8 and 1550 nm of about 0.88 dB/cm. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Allvac 718 Plus and Haynes 282 are relatively new precipitation hardening nickel based superalloys with good high temperature mechanical properties. In addition, the weldability of these superalloys enhances easy fabrication. The combination of high temperature capabilities and superior weldability is unmatched by other precipitation hardening superalloys and linked to the amount of the γ’ hardening precipitates in the materials. Hence, it is these properties that make Allvac 718 Plus and Haynes 282 desirable in the manufacture of hot sections of aero engine components. Studies show that cast products are less weldable than wrought products. Segregation of elements in the cast results in inhomogeneous composition which consequently diminishes weldability. Segregation during solidification of the cast products results in dendritic microstructure with the segregating elements occupying interdendritic regions. These segregating elements are trapped in secondary phases present alongside γ matrix. Studies show that in Allvac 718Plus, the segregating phase is Laves while in Haynes 282 the segregating phase is not yet fully determined. Thus, the present study investigated the effects of homogenization heat treatments in eliminating segregation in cast Allvac 718 Plus and Haynes 282. Paramount to the study was the effect of different homogenization temperatures and dwell time in the removal of the segregating phases. Experimental methods used to both qualify and quantify the segregating phases included SEM, EDX analysis, manual point count and macro Vickers hardness tests. Main results show that there is a reduction in the segregating phases in both materials as homogenization proceeds hence a disappearance of the dendritic structure. In Allvac 718 Plus, plate like structures is observed to be closely associated with the Laves phase at low temperatures and dwell times. In addition, Nb is found to be segregating in the interdendritic areas. The expected trend of increase in Laves as a result of the dissolution of the plate like structures at the initial stage of homogenization is only detectable for few cases. In Haynes 282, white and grey phases are clearly distinguished and Mo is observed to be segregating in interdendritic areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium is a biomaterial widely employed in biomedical applications (implants, prostheses, valves, stents). Several heat treatments are usually used in order to obtain physical properties required to different applications. This work studied the influence of the heat treatment on microstructure of commercial pure titanium, and their consequences in growth and proliferation of MC3T3-E1 cells. Discs of titanium were treated in different temperatures, and characterized by optical microscopy, image analysis, wettabillity, roughness, hardness and X-ray diffraction. After the heat treatment, significant modifications in these properties were observed. Pattern images of titanium, before and after the cell culture, were compared by overlapping to analyze the influence of microstructure in microstructure and preferences guidance cells. However, in general, titanium discs that showed a higher residual strength also presented an increase of cells numbers on surface

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The titanium and titanium alloys are widely used as biomaterial in biomedical device and so research have been developed aiming to improve and/or better to understand interaction biomaterial/biological environment. The process for manufacturing of this titanium implants usually involves a series of thermal and mechanical processes which have consequence on the final product. The heat treatments are usually used to obtain different properties for each application. In order to understand the influence of these treatments on the biological response of the surface, it was done, in this work, different heat treatments in titanium and analyzed their influence on the morphology, adhesion and proliferation of the pre-osteoblastic cells (MC3T3-E1). For such heat-treated titanium disks were characterized by optical microscopy, contact angle, surface energy, roughness, microhardness, X-ray diffraction and scanning through the techniques (BSE, EDS and EBSD). For the analysis of biological response were tested by MTT proliferation, adhesion by crystal violet and β1 integrin expression by flow cytometry. It was found that the presence of a microstructure very orderly, defined by a chemical attack, cells tend to stretch in the same direction of orientation of the material microstructure. When this order does not happen, the most important factor influencing cell proliferation is the residual stress, indicated by the hardness of the material. This way the disks with the highest level state of residual stress also showed increased cell proliferation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery of the spatial uniform coexistence of superconductivity and ferromagnetism in ruthenocuprates, RuSr2GdCu2O8 (Ru-1212), has spurred an extraordinary development in the study of the competition between magnetism and superconductivity. However, several points of their preparation process and characterization that determine their superconductive behaviour are still obscure. The improvement of sample preparation conditions involves some thermal treatments in inert atmosphere. Anelastic spectroscopy measurements were made using an inverted torsion pendulum, operating with an oscillation frequency of 38 Hz, temperature in the 90 and 310 K range, heating rate of 1 K/min, and vacuum better than 10(-3) Pa. The results show anelastic relaxation peaks at 210 K related to the presence of interstitial oxygen atoms. The peaks decrease significantly with the oxygen loss caused by the heat treatments in vacuum, appearing again after the annealing of the sample in an oxygen atmosphere. These observed peaks are clearly related to the additional oxygen atoms, with activation energy 0.13 and 0.36 eV, and can be explained in terms by diffusional jumps of interstitial oxygen in the RuO2 planes. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of heat treatment on morphologies and microstructures of Al 2024 and Al 7050 alloys, used as aircraft components, were studied by metallographic techniques. Light microscopy (LM) and quantitative image analysis were used to characterize the precipitate dispersion and morphology for these alloys. The application of the scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) combined techniques for studying these multiphase systems makes it possible to distinguish and quantify the different phases in the surface structure. Xray diffraction also permitted a qualitative comparison of the structures before and after heat treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ferromagnetic materials play an important role in the development of various electronic devices and, have great importance insofar as they may determine the efficiency, cost and, size of the devices. For this reason, many scientific researches is currently focused on the study of materials at ever smaller scales, in order to understand and better control the properties of nanoscale systems, i.e. with dimensions of the order of nanometers, such as thin film ferromagnetic. In this work, we analyze the structural and magnetic properties and magnetoresistance effect in Permalloy-ferromagnetic thin films produced by magnetron sputtering. In this case, since the magnetoresistance effect dependent interfaces of thin films, this work is devoted to the study of the magnetoresistance in samples of Permalloy in nominal settings of: Ta[4nm]/Py[16nm]/Ta[4nm], Ta[4nm]/Py[16nm]/O2/Ta[4nm], Ta[4nm]/O2/Py[16nm]/Ta[4nm], Ta[4nm]/O2/Py[16n m]/O2/Ta[4nm], as made and subjected to heat treatment at temperatures of 160ºC, 360ºC e 460ºC, in order to verify the influence of the insertion of the oxygen in the layer structure of samples and thermal treatments carried out after production of the samples. Results are interpreted in terms of the structure of the samples, residual stresses stored during deposition, stresses induced by heat treatments and magnetic anisotropies

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives. This study characterized the feldspathic ceramic surfaces after various silanization protocols.Methods. Ceramic bars (2 mm x 4 mm x 10 mm) (N = 18) of feldpathic ceramic (VM7, VITA Zahnfabrik) were manufactured and finished. Before silane application, the specimens were ultrasonically cleaned in distilled water for 10 min. The ceramic specimens were randomly divided into nine groups (N = 2 per group) and were treated with different silane protocols. MPS silane (ESPE-Sil, 3M ESPE) was applied to all specimens and left to react at 20 degrees C for 2 min (G20). After drying, the specimens were subjected to heat treatment in an oven at 38 degrees C (G38), 79 degrees C (G79) or 100 degrees C (G100) for 1 min. Half of the specimens of each group were rinsed with water at 80 degrees C for 15 s (G20B, G38B, G79B, G100B). The control group (GC) received no silane. Attenuated total reflection infrared Fourier transform analysis (ATR FT-IR) was performed using a spectrometer. Thickness of silane layer was measured using a spectroscopic ellip-someter working in the lambda = 632.8 nm (He-Ne laser) at 70 degrees incidence angle. Surface roughness was evaluated using an optical profilometer. Specimens were further analyzed under the Scanning Electron Microscopy (SEM) to observe the topographic patterns.Results. ATR FT-IR analysis showed changes in Si-O peaks with enlarged bands around 940 cm(-1). Ellipsometry measurements showed that all post-heat treatment actions reduced the silane film thickness (30.8-33.5 nm) compared to G20 (40 nm). The groups submitted to rinsing in hot water (B groups) showed thinner silane films (9.8-14.4 nm) than those of their corresponding groups (without washing) (30.8-40 nm). Profilometer analysis showed that heat treatments (Ra approximate to 0.10-0.19 mu m; Rq approximate to 0.15-0.26 mu m) provided a smoother surface than the control group (Ra approximate to 0.48 mu m; Rq approximate to 0.65 mu m). Similar patterns were also observed in SEM images.Significance. Heat treatment after MPS silane application improved the silane layer network. Rinsing with boiling water eliminated the outmost unreacted regions of the silane yielding to thinner film thicknesses. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of Fe addition on the microstructural properties and the corrosion resistance of Al-Zn-Mg alloys submitted to different heat treatments (cast, annealed and aged), has been studied in chloride solutions using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), cyclic polarization (CP) and open circuit potential (o.c.p.) measurements. The presence of 0.3% Fe in the alloy limited the growth of the MgZn2 precipitates, both in the annealed and in the quenched specimens. No effect of Cr on the grain size in the presence of Fe was found because of the accumulation of Cr in the Fe-rich particles. Fe in the Al-Zn-Mg alloys also made them more susceptible to pitting. Pitting occurred mainly near the Fe-rich particles both, under o.c.p. conditions in O-2-saturated solutions and during the CP.