991 resultados para HARDWOOD KRAFT PULP


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper concerns about the durability of new material in construction. It is noteworthy the fact that increases increasingly searching for alternative materials that do not depend only of natural resources and at the same time be an alternative for reuse of industrial waste. Since the construction materials have a long life and a high cost of civil works and maintenance, it is crucial to estimate the behavior of a new product. Thus , this work discuss the durability of mixed mortar lining , made with waste from the process Kraft pulp production , known as dregs and grits , in partial replacement of sand. Tests were conducted to simulate conditions as adverse environments of constant heat and fire, with the aim of analyzing the behavior of mortar mixed matched the behavior of standard mortar

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The new market, focused on sustainability and other environmental concerns, refers to innovations that seek alternative forms of production. In pulp and paper bleaching alternative reagents are studied, for example, hydrogen peroxide, in partial substitution of chlorine dioxide in order to reduce the formation of organochlorines. In this context, this study examined the burden of hydrogen peroxide (H2O2) on alkaline extraction stage (stage Ep) required for the bleaching of pulp with eucalyptus kraft pulp, pre-oxygen delignified to obtain equivalent brightness at 90 ± 0.5% ISO, as well as its effect on quality of pulp produced. The pulp was bleached by the sequence D(Ep)DP, with the application of factor kappa of 0.14 and varying the concentration of hydrogen peroxide in Ep stage three, five, seven and nine kilograms of reagent per ton of pulp absolutely drought. The final P stage was optimized with the use of six, nine and twelve pounds of hydrogen peroxide per ton of absolutely dry pulp to achieve the required brightness. The quality of the pulp produced was analyzed based on the kappa number, the brightness and the viscosity. The methods were performed according to standards set by the standard TAPPI (Technical Association of the Pulp and Paper Industry). The best result was obtained using the following D0Ep(7)D1P(6), which showed a viscosity of 19.9 cP, 89.6% ISO brightness, consumption of 94.9 kg / t of reagents and reagent costs of US$ 28.15, because it showed better pulp quality for a lower cost compared to the others. It was found that the greater the amount of hydrogen peroxide in alkaline extraction, the lower the kappa number and increased the amount of residual hydrogen peroxide. The higher the charge of hydrogen peroxide in Ep stage, the lower the need for hydrogen peroxide in the final P stage, reducing the cost of bleaching

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data visualization techniques are powerful in the handling and analysis of multivariate systems. One such technique known as parallel coordinates was used to support the diagnosis of an event, detected by a neural network-based monitoring system, in a boiler at a Brazilian Kraft pulp mill. Its attractiveness is the possibility of the visualization of several variables simultaneously. The diagnostic procedure was carried out step-by-step going through exploratory, explanatory, confirmatory, and communicative goals. This tool allowed the visualization of the boiler dynamics in an easier way, compared to commonly used univariate trend plots. In addition it facilitated analysis of other aspects, namely relationships among process variables, distinct modes of operation and discrepant data. The whole analysis revealed firstly that the period involving the detected event was associated with a transition between two distinct normal modes of operation, and secondly the presence of unusual changes in process variables at this time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ten growth or wood-quality traits were assessed in three nearby Corymbia citriodora subsp. variegata (CCV) open-pollinated family-within-provenance trials (18 provenances represented by a total of 374 families) to provide information for the development of a breeding program targeting both pulp and solid-wood products. Growth traits (diameter at breast high over bark [DBH], height and conical volume) were assessed at 3 and 7 years of age. Wood-quality traits (density [DEN], Kraft pulp yield [KPY], modulus of elasticity [MoE] and microfibril angle [MfA]) were predicted using near-infrared spectroscopy on wood samples collected from these trials when aged between 10 and 12 years. The high average KPY, DEN and MoE, and low average MfA observed indicates CCV is very suitable for both pulp and timber products. All traits were under moderate to strong genetic control. In across- trials analyses, high (>0.4) heritability estimates were observed for height, DEN, MoE and MfA, while moderate heritability estimates (0.24 to 0.34) were observed for DBH, volume and KPY. Most traits showed very low levels of genotype × site interaction. Estimated age–age genetic correlations for growth traits were strong at both the family (0.97) and provenance (0.99) levels. Relationships among traits (additive genetic correlation estimates) were favourable, with strong and positive estimates between growth traits (0.84 to 0.98), moderate and positive values between growth and wood-quality traits (0.32 to 0.68), moderate and positive between KPY and MoE (0.64), and high and positive between DEN and MoE (0.82). However, negative (but favourable) correlations were detected between MfA and all other evaluated traits (−0.31 to −0.96). The genetic correlation between the same trait expressed on two different sites, at family level, ranged from 0.24 to 0.42 for growth traits, and from 0.29 to 0.53 for wood traits. Therefore simultaneous genetic improvement of growth and wood property traits in CCV for the target environment in south-east Queensland should be possible, given the moderate to high estimates of heritability and favourable correlations amongst all traits studied, unless genotype × site interactions are greater than was evident. © 2016 NISC (Pty) Ltd

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A casca do coco-verde é um resíduo do consumo da água de coco. Em cidades litorâneas este resíduo já tem se tornado um grande problema, pois é de difícil decomposição. O presente estudo teve como objetivo avaliar a casca do coco-verde ( Cocos nucifera L.) para a produção de celulose kraft. A matéria-prima foi caracterizada com relação à densidade básica, composição química, dimensão das fibras e proporção de elementos anatômicos. Foram realizados três cozimentos-teste sendo que um deles foi escolhido para repetição. Em cada um deles variou-se a carga alcalina visando à elaboração de curvas de cozimento. Nos resultados do processo de polpação foram encontrados valores altos de número kappa, baixos rendimentos e baixos teores de rejeito. As seguintes características do material, baixa densidade básica (0,128 g/cm³), alta quantidade de extrativos (33,68%) e baixa proporção de fibras (22,11%), corroboraram para estes resultados. Assim, a produção de polpa celulósica a partir da casca do coco-verde pelo processo kraft, não se mostrou como uma alternativa viável tecnicamente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Driven by the global trend in the sustainable economy development and environmental concerns, the exploring of plant-derived biomaterials or biocomposites for potential biomedical and/or pharmaceutical applications has received tremendous attention. Therefore, the work of this thesis is dedicated to high-value and high-efficiency utilization of plant-derived materials, with the focus on cellulose and hemicelluloses in the field of biomedical applications in a novel biorefinery concept. The residual cellulose of wood processing waste, sawdust, was converted into cellulose nanofibrils (CNFs) with tunable surface charge density and geometric size through 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-mediated oxidation and mechanical defibrillation. The sawdust-based CNFs and its resultant free-standing films showed comparable or even better mechanical properties than those from a commercial bleached kraft pulp at the same condition, demonstrating the feasibility of producing CNFs and films thereof with outstanding mechanical properties from birch sawdust by a process incorporated into a novel biorefinery platform recovering also polymeric hemicelluloses for other applications. Thus, it is providing an efficient route to upgrade sawdust waste to valuable products. The surface charge density and geometric size of the CNFs were found to play key roles in the stability of the CNF suspension, as well as the gelling properties, swelling behavior, mechanical stiffness, morphology and microscopic structural properties, and biocompatibility of CNF-based materials (i.e. films, hydrogels, and aerogels). The CNFs with tunable surface chemistry and geometric size was found promising applications as transparent and tough barrier materials or as reinforcing additive for production of biocomposites. The CNFs was also applied as structural matrices for the preparation of biocomposites possessing electrical conductivity and antimicrobial activity by in situ polymerization and coating of polypyrrole, and incorporation of silver nanoparticles, which make the material possible for potential wound healing application. The CNF-based matrices (films, hydrogels, and aerogels) with tunable structural and mechanical properties and biocompatibility were further prepared towards an application as 3D scaffolds in tissue engineering. The structural and mechanical strength of the CNF matrices could be tuned by controlling the charge density of the nanocellulose, as well as the pH and temperature values of the hydrogel formation conditions. Biological tests revealed that the CNF scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells, suggesting the usefulness of the CNF-based 3D matrices in supporting crucial cellular processes during cell growth and proliferation. The CNFs was applied as host materials to incorporate biomolecules for further biomedical application. For example, to investigate how the biocompatibility of a scaffold is influenced by its mechanical and structural properties, these properties of CNF-based composite matrices were controlled by incorporation of different hemicelluloses (O-acetyl galactoglucomanan (GGM), xyloglucan (XG), and xylan) into CNF hydrogel networks in different ratios and using two different approaches. The charge density of the CNFs, the incorporated hemicellulose type and amount, and the swelling time of the hydrogels were found to affect the pore structure, the mechanical strength, and thus the cells growth in the composite hydrogel scaffolds. The mechanical properties of the composite hydrogels were found to have an influence on the cell viability during the wound healing relevant 3T3 fibroblast cell culture. The thusprepared CNF composite hydrogels may work as promising scaffolds in wound healing application to provide supporting networks and to promote cells adhesion, growth, and proliferation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four different trials of stratified three-layered fine paper, of sulphate pulp, were performed to investigate if stratified fine fraction or fibres from birch can improve the properties of a paper compared to a reference sheet. All trials had five different scenarios and each scenario was calendered with different linear load. All sheets had a grammage of 80 g/m2.In the first trial, the paper contained birch, pine and filler of calciumcarbonate (marble), and was manufactured with the pilot paper machine XPM and the stratified headbox Formator at RCF (Stora Enso Research Center in Falun). The furnish consisted of 75% birch and 25% pine.The second trial contained coated sheets with paper from trial one as the base paper. The coating slip contained calciumcarbonate and clay and the amount was approximately 10-12 g/m2.The third trial, also with birch and pine but without filler, was performed at STFI (Skogsindustrins Tekniska Forskningsinstitut in Stockholm) with the laboratory scaled paper machine StratEx and the stratified headbox AQ-vanes. The furnish consisted of 75% birch and 25% pine, except for one scenario which contained of 75% pine and 25% birch.The last trial contained fractionated pulp of birch and pine and was performed at STFI. 50% was fine fraction and 50% was coarse fraction.This test does not show any clear benefits of making stratified sheets of birch and pine when it comes to properties such as bending stiffness, tensile index and surface smoothness. The retention can be improved with birch in the surface plies. It is possible that the formation can be improved with birch in the surface plies and pine in the middle ply. It is also possible that fine fraction in the surface plies and coarse fraction in the middle ply can improve both surface smoothness and bending stiffness. The results in this test are shown with confidence intervals which points out the difficulties of analysing sheets manufactured with a pilot paper machine or a laboratory scaled paper machine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates the advantages of using hardwood short fibre pulp (eucalyptus) as alternative to softwood long fibre pulp (pinus) and polymer fibres, traditionally used in reinforcement of cement-based materials. The effects of cellulose fibre length on microstructure and on mechanical performance of fibre-cement composites were evaluated before and after accelerated ageing cycles. Hardwood pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to softwood long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eucalyptus globulus sapwood and heartwood showed no differences in lignin content (23.0% vs. 23.7%) and composition: syringyl-lignin (17.9% vs. 18.0%) and guaiacyl-lignin (4.8% vs. 5.2%). Delignification kinetics of S- and G-units in heartwood and sapwood was investigated by Py-GC–MS/FID at 130, 150 and 170 °C and modeled as double first-order reactions. Reactivity differences between S and G-units were small during the main pulping phase and the higher reactivity of S over G units was better expressed in the later pulping stage. The residual lignin composition in pulps was different from wood or from samples in the initial delignification stages, with more G and H-units. S/G ratio ranged from 3 to 4.5 when pulp residual lignin was higher than 10%, decreasing rapidly to less than 1. The S/H was initially around 20 (until 15% residual lignin), decreasing to 4 when residual lignin was about 3%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Työn tavoitteena oli selvittää koivun kasteluvarastoinnin kannattavuus selluteollisuudessa. Lisäksi tutkittiin, kuinka kastelu vaikuttaa puuaineeseen varastoinnin aikana ja kuinka koivun kasteluvarastointi vaikuttaa puun kuorintaan ja haketukseen, keitettävyyteen, vaalenevuuteen sekä sellun laatuun. Enocellin puukentälle rakennettiin kasteluvarasto, jossa varastoitiin 40,000 m3sob koivua. Kastelu oli päällä huhtikuusta lokakuuhun asti. Kastelun vaikutusta puuaineen muutoksiin arvioitiin lahotutkimusten avulla. Tehdaskoeajoissa verrattiin tuoretta, kasteluvarastoitua ja kuivavarastoitua koivua. Puuaines säilyi lähes muuttumattomana yhden kesän kasteluvarastoinnissa. Kastellulla koivulla terveen puun osuus oli yli 85 % kesän lopussa, kun se oli alle 20 % kuivavarastoidulla koivulla. Kuorinnan puuhäviö laskee selvästi kastelukoivulla ja myös hakkeen laatu oli parempaa kuin kuivavarastoidulla koivulla. Kastelukoivulla hakkeen kuoripitoisuus oli vain 0.13 %. Kuoren kuiva-aine oli 12 prosenttiyksikköä alhaisempi kuin kuivalla koivulla, mutta kuoren lämpöarvossa ero oli vain 1 €/ADt. Varastointimenetelmällä ei ollut vaikutusta hakkeen keitettävyyteen, mutta tuoreella puulla keitettävyys oli parempi kuin varastoidulla puulla. Sellun asetoniuutepitoisuus oli samalla tasolla tuoreella ja kastellulla puulla. Kuivalla syyspuulla uutetaso oli korkeampi, vaikka hartsisaippuan annostusta nostettiin 10 kg/ADt. Betulinolitaso oli kastellulla puulla erittäin alhainen puun hyvän kuoriutuvuuden vuoksi. Kastellun ja tuoreen puun vaalenevuus oli parempi kuin kuivalla puulla. Aktiivikloorin kulutus oli 3 – 4 kg/ADt alhaisempi kuin kuivalla syyspuulla. Puun varastoinnilla ei ollut vaikutusta sellun laatuun. Koivun kasteluvarastoinnin kannattavuus on erittäin hyvä. Tuotantokustannukset määritettiin tuoreelle, kastellulle, kierrätetylle sekä kuivalle koivulle. Kasteluvarastointi laskee tuotantokustannuksia noin 10 €/ADt verrattuna kierrätettyyn koivuun. Kuivavarastoidun puun käyttö nostaa tuotantokustannuksia noin 5 €/ADt verrattuna kastelukoivuun. Kierrätetyn ja kuivavarastoidun puun kustannusero johtuu kierrätyskustannuksista. Kasteluvarastolle, jota käytettiin kesällä 2004, takaisinmaksuaika on vain 0.4 vuotta. Jos tavoiteltu takaisinmaksuaika olisi kaksi vuotta, niin perusinvestointi 80,000 m3sob varastolle voisi maksaa noin 370 k€.