898 resultados para HAMILTONIAN-FORMULATION
A canonical formulation of the direct position kinematics problem for a general 6-6 stewart platform
Resumo:
This paper deals with the direct position kinematics problem of a general 6-6 Stewart platform, the complete solution of which is not reported in the literature until now and even establishing the number of possible solutions for the general case has remained an unsolved problem for a long period. Here a canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform is presented. The kinematic equations are expressed as a system of six quadratic and three linear equations in nine unknowns, which has a maximum of 64 solutions. Thus, it is established that the mechanism, in general, can have up to 64 closures. Further reduction of the system is shown arriving at a set of three quartic equations in three unknowns, the solution of which will yield the assembly configurations of the general Stewart platform with far less computational effort compared to earlier models.
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
There exist several standard numerical methods for integrating ordinary differential equations. However, if one is interested in integration of Hamiltonian systems, these methods can lead to wrong results. This is due to the fact that these methods do not explicitly preserve the so-called 'symplectic condition' (that needs to be satisfied for Hamiltonian systems) at every integration step. In this paper, we look at various methods for integration that preserve the symplectic condition.
Resumo:
The enthalpy method is primarily developed for studying phase change in a multicomponent material, characterized by a continuous liquid volume fraction (phi(1)) vs temperature (T) relationship. Using the Galerkin finite element method we obtain solutions to the enthalpy formulation for phase change in 1D slabs of pure material, by assuming a superficial phase change region (linear (phi(1) vs T) around the discontinuity at the melting point. Errors between the computed and analytical solutions are evaluated for the fluxes at, and positions of, the freezing front, for different widths of the superficial phase change region and spatial discretizations with linear and quadratic basis functions. For Stefan number (St) varying between 0.1 and 10 the method is relatively insensitive to spatial discretization and widths of the superficial phase change region. Greater sensitivity is observed at St = 0.01, where the variation in the enthalpy is large. In general the width of the superficial phase change region should span at least 2-3 Gauss quadrature points for the enthalpy to be computed accurately. The method is applied to study conventional melting of slabs of frozen brine and ice. Regardless of the forms for the phi(1) vs T relationships, the thawing times were found to scale as the square of the slab thickness. The ability of the method to efficiently capture multiple thawing fronts which may originate at any spatial location within the sample, is illustrated with the microwave thawing of slabs and 2D cylinders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We develop a model of the solar dynamo in which, on the one hand, we follow the Babcock-Leighton approach to include surface processes, such as the production of poloidal field from the decay of active regions, and, on the other hand, we attempt to develop a mean field theory that can be studied in quantitative detail. One of the main challenges in developing such models is to treat the buoyant rise of the toroidal field and the production of poloidal field from it near the surface. A previous paper by Choudhuri, Schüssler, & Dikpati in 1995 did not incorporate buoyancy. We extend this model by two contrasting methods. In one method, we incorporate the generation of the poloidal field near the solar surface by Durney's procedure of double-ring eruption. In the second method, the poloidal field generation is treated by a positive α-effect concentrated near the solar surface coupled with an algorithm for handling buoyancy. The two methods are found to give qualitatively similar results.
Resumo:
In achieving higher instruction level parallelism, software pipelining increases the register pressure in the loop. The usefulness of the generated schedule may be restricted to cases where the register pressure is less than the available number of registers. Spill instructions need to be introduced otherwise. But scheduling these spill instructions in the compact schedule is a difficult task. Several heuristics have been proposed to schedule spill code. These heuristics may generate more spill code than necessary, and scheduling them may necessitate increasing the initiation interval. We model the problem of register allocation with spill code generation and scheduling in software pipelined loops as a 0-1 integer linear program. The formulation minimizes the increase in initiation interval (II) by optimally placing spill code and simultaneously minimizes the amount of spill code produced. To the best of our knowledge, this is the first integrated formulation for register allocation, optimal spill code generation and scheduling for software pipelined loops. The proposed formulation performs better than the existing heuristics by preventing an increase in II in 11.11% of the loops and generating 18.48% less spill code on average among the loops extracted from Perfect Club and SPEC benchmarks with a moderate increase in compilation time.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
This paper presents a novel Second Order Cone Programming (SOCP) formulation for large scale binary classification tasks. Assuming that the class conditional densities are mixture distributions, where each component of the mixture has a spherical covariance, the second order statistics of the components can be estimated efficiently using clustering algorithms like BIRCH. For each cluster, the second order moments are used to derive a second order cone constraint via a Chebyshev-Cantelli inequality. This constraint ensures that any data point in the cluster is classified correctly with a high probability. This leads to a large margin SOCP formulation whose size depends on the number of clusters rather than the number of training data points. Hence, the proposed formulation scales well for large datasets when compared to the state-of-the-art classifiers, Support Vector Machines (SVMs). Experiments on real world and synthetic datasets show that the proposed algorithm outperforms SVM solvers in terms of training time and achieves similar accuracies.
Resumo:
In this article, the Eringen's nonlocal elasticity theory has been incorporated into classical/local Bernoulli-Euler rod model to capture unique properties of the nanorods under the umbrella of continuum mechanics theory. The spectral finite element (SFE) formulation of nanorods is performed. SFE formulation is carried out and the exact shape functions (frequency dependent) and dynamic stiffness matrix are obtained as function of nonlocal scale parameter. It has been found that the small scale affects the exact shape functions and the elements of the dynamic stiffness matrix. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave dispersion properties of carbon nanotubes.
Resumo:
On increasing the coupling strength (lambda) of a non-Abelian gauge field that induces a generalized Rashba spin-orbit interaction, the topology of the Fermi surface of a homogeneous gas of noninteracting fermions of density rho similar to k(F)(3) undergoes a change at a critical value, lambda(T) approximate to k(F) [Phys. Rev. B 84, 014512 ( 2011)]. In this paper we analyze how this phenomenon affects the size and shape of a cloud of spin-1/2 fermions trapped in a harmonic potential such as those used in cold atom experiments. We develop an adiabatic formulation, including the concomitant Pancharatnam-Berry phase effects, for the one-particle states in the presence of a trapping potential and the gauge field, obtaining approximate analytical formulas for the energy levels for some high symmetry gauge field configurations of interest. An analysis based on the local density approximation reveals that, for a given number of particles, the cloud shrinks in a characteristic fashion with increasing.. We explain the physical origins of this effect by a study of the stress tensor of the system. For an isotropic harmonic trap, the local density approximation predicts a spherical cloud even for anisotropic gauge field configurations. We show, via a calculation of the cloud shape using exact eigenstates, that for certain gauge field configurations there is a systematic and observable anisotropy in the cloud shape that increases with increasing gauge coupling lambda. The reasons for this anisotropy are explained using the analytical energy levels obtained via the adiabatic approximation. These results should be useful in the design of cold atom experiments with fermions in non-Abelian gauge fields. An important spin-off of our adiabatic formulation is that it reveals exciting possibilities for the cold-atom realization of interesting condensed matter Hamiltonians by using a non-Abelian gauge field in conjunction with another potential. In particular, we show that the use of a spherical non-Abelian gauge field with a harmonic trapping potential produces a monopole field giving rise to a spherical geometry quantum Hall-like Hamiltonian in the momentum representation.
Resumo:
We propose an iterative algorithm to simulate the dynamics generated by any n-qubit Hamiltonian. The simulation entails decomposing the unitary time evolution operator U (unitary) into a product of different time-step unitaries. The algorithm product-decomposes U in a chosen operator basis by identifying a certain symmetry of U that is intimately related to the number of gates in the decomposition. We illustrate the algorithm by first obtaining a polynomial decomposition in the Pauli basis of the n-qubit quantum state transfer unitary by Di Franco et al. [Phys. Rev. Lett. 101, 230502 (2008)] that transports quantum information from one end of a spin chain to the other, and then implement it in nuclear magnetic resonance to demonstrate that the decomposition is experimentally viable. We further experimentally test the resilience of the state transfer to static errors in the coupling parameters of the simulated Hamiltonian. This is done by decomposing and simulating the corresponding imperfect unitaries.
Resumo:
In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first-order and second-order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth-order RungeKutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two-dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side-by-side. Results of these simulations were extensively compared with the previous numerical data. Copyright (C) 2011 John Wiley & Sons, Ltd.