802 resultados para H54 - Infrastructures
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Doutoramento em Engenharia Agronómica - Instituto Superior de Agronomia - UL
Resumo:
The purpose of this article is to offer the design and infrastructure parameters necessary to have safe playgrounds since they represent a unique opportunity to foster an integral development, particularly in children. In these public places, children learn to resolve conflicts to continue playing, having fun, and developing. These recreational areas then become learning places that foster the formation process and provide great social, emotional, physical, cognitive, intellectual, and spiritual benefits. However, such benefits are diminished by the lack of interest of the communities and the adult population to optimize playground conditions and by unscrupulous developers, who design playgrounds in inappropriate places putting the population at risk. Therefore, the following must be taken seriously into consideration before, during, and after the construction of a playground: design, construction, materials, equipment, components and the procedures to meet the necessary safety requirements and the objective for which they were created, that being an area designed, equipped, and located exclusively for playing that facilitates the integral development of the population. Consequently, it is urgent for Costa Rica to enact clear regulations that guarantee the construction, design, and use of playgrounds that do not put the population’s health at risk, prevent accidents, and guarantee the inalienable rights of each Costa Rican.
Resumo:
This paper outlines three information organization frameworks: library classification, social tagging, and boundary infrastructures. It then outlines functionality of these frameworks. The paper takes a neo-pragmatic approach. The paper finds that these frameworks are complementary, and by understanding the differences and similarities that obtain between them, researchers and developers can begin to craft a vocabulary of evaluation.
Resumo:
Les méthodes de design et de construction des routes développés dans le sud canadien ont maintenant besoin d’être adaptés aux environnements nordiques du pays afin de prévenir le dégel dramatique du pergélisol lors de la construction d’une nouvelle route. De plus, le réchauffement climatique occasionne présentement d’importants problèmes de stabilité des sols dans le nord canadien. Ces facteurs causent des pertes importantes au niveau des capacités fonctionnelles et structurales de l’Alaska Highway au Yukon sur un segment de plus de 200 km situé entre le village de Destruction Bay et la frontière de l’Alaska. Afin de trouver des solutions rentables à long terme, le ministère du transport du Yukon (en collaboration avec le Federal Highway Administration du gouvernement américain, Transports Canada, l’Université Laval, l’Université de Montréal et l’Alaska University transportation Center) a mis en place 12 sections d’essais de 50 mètres de longueur sur l’autoroute de l’Alaska près de Beaver Creek en 2008. Ces différentes sections d’essais ont été conçues pour évaluer une ou plusieurs méthodes combinées de stabilisation thermique telles que le drain thermique, le remblai à convection d’air, le pare-neige / pare-soleil, le remblai couvert de matières organiques, les drains longitudinaux, le déblaiement de la neige sur les pentes et la surface réfléchissante. Les objectifs spécifiques de la recherche sont 1) d’établir les régimes thermiques et les flux de chaleur dans chacune des sections pour les 3 premières années de fonctionnement ; 2) de documenter les facteurs pouvant favoriser ou nuire à l’efficacité des systèmes de protection et ; 3) de déterminer le rapport coûts/bénéfices à long terme pour chacune des techniques utilisées. Pour ce faire, une nouvelle méthode d’analyse, basée sur la mesure de flux d’extraction de chaleur Hx et d’induction Hi à l’interface entre le remblai et le sol naturel, a été utilisée dans cette étude. Certaines techniques de protection du pergélisol démontrent un bon potentiel durant leurs 3 premières années de fonctionnement. C’est le cas pour le remblai à convection d’air non-couvert, le remblai à convection d’air pleine largeur, les drains longitudinaux, le pare-soleil / pare-neige et la surface réfléchissante. Malheureusement, des problèmes dans l’installation des drains thermiques ont empêché une évaluation complète de leur efficacité.
Resumo:
Nell’elaborato viene studiato il fenomeno dell’incidentalità singola delle utenze deboli sulla strada (perdita di controllo, scivolamento ecc..ecc..), con particolare enfasi nell’analizzare le conseguenze traumatiche dovute all’impatto con la superficie stradale. Una nuova tecnologia viene sviluppata per rendere le pavimentazioni di piste ciclabili, marciapiedi e zone pedonali con capacità di assorbimento degli impatti, prevenendo, o riducendo drasticamente, la probabilità e entità di eventi traumatici a seguito di una caduta. Attraverso una stesa di prova avvenuta ad Imola (BO), si sono analizzate e risolte le problematiche dovute alle discrepanze riscontrate fra “costruzione” in laboratorio e costruzione nella realtà urbana. La nuova tecnologia, infatti, è stata studiata come “construction-friendly”, permettendo alle società di costruzione e pavimentazione di stendere il nuovo manto protettivo con strumenti e macchinari tradizionali. Infine l’asfalto modificato è stato testato nei laboratori svedesi del KTH – Royal Institute of Technology per provarne l’efficacia in termini di assorbimento degli impatti. Nel “Drop Impact Test”, test specifico per l’approvazione dei caschi protettivi da bicicletta, l’asfalto modificato ha performato ben al di sotto della soglia di approvazione dei caschi da ciclista, e si colloca in un range di valore di accelerazione lineare perfino al di sotto della soglia di “Low Risk of Injuries”. La nuova tecnologia, inoltre, fa utilizzo di gomma granulata riciclata da pneumatici fuori uso. Tale dettaglio conferisce maggiore sostenibilità al progetto: oltre all’utilizzo di legante a freddo, che diminuisce le emissioni di CO2, e di incentivare l’utilizzo della mobilità dolce attraverso una più sicura rete infrastrutturale, l’utilizzo di gomma riciclata dà nuova vita al materiale che altrimenti andrebbe in discarica e prolunga, così, la vita utile del materiale.
Resumo:
The growing ecological awareness of Ocean Sprawl impacts is promoting the adoption of eco-engineering strategies to enhance the ecological performance of coastal infrastructures. Biomimicry, as an eco-engineering tool, aims to design infrastructure more suitable for wildlife by manipulating structural factors to mimic natural habitats. However, little is known about the extent to which natural and artificial substrates differ in their structure and to what extent such differences affect the biota. To fill these knowledge gaps and consequently design biomimetic surfaces, I initially explored how much physical structure diverges between various types of natural and artificial substrates and tested to what extent differences in physical structure and material composition affect the epibenthic communities. By mean of an in-field mensurative experiment and a systematic review coupled with a meta-analysis, I found that, although communities tended to differ between natural and artificial coastal habitats, both physical structure and material composition reported an overall mild effect on epibenthic communities. However, an informed choice of building material and an appropriate combination of multiple structural manipulations can promote ecological benefits at multiple levels, from increasing the ecological performance in situ to reducing the impacts during the production process. Thus, I combined my findings in a final experiment, still in progress, where I am testing the combined role of shape, brightness and inclination of biomimetic surfaces I have designed in producing benefits at multiple levels. Overall, I suggest that biomimicry has the potential to increase the ecological value of artificial habitats especially when a wide range of aspects is simultaneously considered. Indeed, none of the structural factors, individually, can fully mimic the “natural conditions” to effectively improve the ecological performance of the artificial substrates. This emphasizes the need to include in future works a multi-level perspective to fully achieve the great potential of biomimicry.
Resumo:
Modern networks are undergoing a fast and drastic evolution, with software taking a more predominant role. Virtualization and cloud-like approaches are replacing physical network appliances, reducing the management burden of the operators. Furthermore, networks now expose programmable interfaces for fast and dynamic control over traffic forwarding. This evolution is backed by standard organizations such as ETSI, 3GPP, and IETF. This thesis will describe which are the main trends in this evolution. Then, it will present solutions developed during the three years of Ph.D. to exploit the capabilities these new technologies offer and to study their possible limitations to push further the state-of-the-art. Namely, it will deal with programmable network infrastructure, introducing the concept of Service Function Chaining (SFC) and presenting two possible solutions, one with Openstack and OpenFlow and the other using Segment Routing and IPv6. Then, it will continue with network service provisioning, presenting concepts from Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC). These concepts will be applied to network slicing for mission-critical communications and Industrial IoT (IIoT). Finally, it will deal with network abstraction, with a focus on Intent Based Networking (IBN). To summarize, the thesis will include solutions for data plane programming with evaluation on well-known platforms, performance metrics on virtual resource allocations, novel practical application of network slicing on mission-critical communications, an architectural proposal and its implementation for edge technologies in Industrial IoT scenarios, and a formal definition of intent using a category theory approach.
Resumo:
With the entry into force of the latest Italian Building Code (NTC 2008, 2018), innovative criteria were provided, especially for what concerns the seismic verifications of large infrastructures. In particular, for buildings considered as strategic, such as large dams, a seismotectonic study of the site was declared necessary, which involves a re-assessment of the basic seismic hazard. This PhD project fits into this context, being part of the seismic re-evaluation process of large dams launched on a national scale following the O.P.C.M. 3274/2003, D.L. 79/2004. A full seismotectonic study in the region of two large earth dams in Southern Italy was carried out. We identified and characterized the structures that could generate earthquakes in our study area, together with the definition of the local seismic history. This information was used for the reassessment of the basic seismic hazard, using probabilistic seismic hazard assessment approaches. In recent years, fault-based models for the seismic hazard assessment have been proposed all over the world as a new emerging methodology. For this reason, we decided to test the innovative SHERIFS approach on our study area. The occasion of the seismotectonic study gave also the opportunity to focus on the characteristics of the seismic stations that provided the data for the study itself. In the context of the work presented here, we focused on the 10 stations that had been active for the longest time and we carried out a geophysical characterization, the data of which merged into a more general study on the soil-structure interaction at seismic stations and on the ways in which it could affect the SHA. Lastly, an additional experimental study on the two dams and their associated minor structures is also presented, aimed at defining their main dynamic parameters, useful for subsequent dynamic structural and geotechnical studies.
Resumo:
This doctoral dissertation represents a cluster of research activities carried out at the DICAM Department of the University of Bologna during a three-year Ph.D. course. The goal of this research is to show how the development of an interconnected infrastructure network, aimed at promoting accessibility and sustainability of places, is fundamental in a framework of deep urban regeneration. Sustainable urban mobility plays an important role in improving the quality of life of citizens. From an environmental point of view, a sustainable mobility system means reducing fuel discharges and energy waste and, in general, aims to promote low carbon emissions. At the same time, a socially and economically sustainable mobility system should be accessible to everybody and create more job opportunities through better connectivity and mobility. Environmentally friendly means of transport such as non-motorized transport, electric vehicles, and hybrid vehicles play an important role in achieving sustainability but require a planned approach at the local policy level. The aim of this study is to demonstrate that, through a targeted reconnection of road and cycle-pedestrian routes, the quality of life of an urban area subject to degradation can be significantly improved just by increasing its accessibility and sustainability. Starting from a detailed study of the European policies and from the comparison with real similar cases, the case study of the Canal Port of Rimini (Italy) has been analysed within the European project FRAMESPORT. The analysis allowed the elaboration of a multicriterial methodology to get to the definition of a project proposal and of a priority scale of interventions. The applied methodology is a valuable tool that may be used in the future in similar urban contexts. Finally, the whole project was represented by using virtual reality to visually show the difference between the before and after the regeneration intervention.
Resumo:
The dissertation explores the intersections between the temporalities of migration management and border-crossers’ temporalities. First, I analyze the relation between acceleration and (non)knowledge production by focusing on the “accelerated procedures” for asylum. These procedures are applied to people whose asylum applications are deemed as suspicious and likely to be rejected. I argue that the shortened timeframes shaping these procedures are a tool for hindering asylum seekers’ possibilities to collect and produce evidence supporting their cases, eventually facilitating and speeding up their removal for Member States’ territory. Second, I analyze the encounters between migration management and border-crossers during the identification practices carried out the Hotspots and during the asylum process in terms of “temporal collisions”. I develop the notion of “hijacked knowledge” to illustrate how these “temporal collisions” negatively affect border-crossers’ possibilities of action, by producing a significant lack of knowledge and awareness about the procedures to which they are subjected and their temporal implications. With the concept of “reactive calibration”, on the other hand, I suggest that once migrants become aware of the temporalities of control, they try to appropriate them by aligning their bodies, narrations and identities to those temporalities. The third part of the dissertation describes the situated intervention developed as part of my ethnographic activity. Drawing on participatory design, design justice and STS making and doing, I designed a role-playing game - My documents, check them out - seeking to involve border-crossers in the re-design of the categories usually deployed in migration management.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This study evaluated the loss of the torque applied after use of new screws and after successive tightening. Four infrastructures (IE), using UCLA castable abutment type, were cast in cobalt-chromium alloy and new abutment screws (G1) were used in a first moment. Subsequently, the same abutment screws were used a second time (G2) and more than two times (G3). The values of the torques applied and detorques were measured with a digital torque wrench to obtain the values of initial tightening loss (%). Data were analyzed by ANOVA and Tukey's test (?=0.05). Significant differences were observed between the G1 (50.71% ± 11.36) and G2 (24.01% ± 3.33) (p=0.000) and between G1 (50.71% ± 11.36) and G3 (25.60% ± 4.64) (p=0.000). There was no significant difference between G2 and G3 (p=0.774). Within the limitations of the study, it may be concluded that the percentage of the initial torque loss is lower when screws that already suffered the application of an initial torque were used, remaining stable after application of successive torques.
Resumo:
Imaging Spectroscopy (IS) is a promising tool for studying soil properties in large spatial domains. Going from point to image spectrometry is not only a journey from micro to macro scales, but also a long stage where problems such as dealing with data having a low signal-to-noise level, contamination of the atmosphere, large data sets, the BRDF effect and more are often encountered. In this paper we provide an up-to-date overview of some of the case studies that have used IS technology for soil science applications. Besides a brief discussion on the advantages and disadvantages of IS for studying soils, the following cases are comprehensively discussed: soil degradation (salinity, erosion, and deposition), soil mapping and classification, soil genesis and formation, soil contamination, soil water content, and soil swelling. We review these case studies and suggest that the 15 data be provided to the end-users as real reflectance and not as raw data and with better signal-to-noise ratios than presently exist. This is because converting the raw data into reflectance is a complicated stage that requires experience, knowledge, and specific infrastructures not available to many users, whereas quantitative spectral models require good quality data. These limitations serve as a barrier that impedes potential end-users, inhibiting researchers from trying this technique for their needs. The paper ends with a general call to the soil science audience to extend the utilization of the IS technique, and it provides some ideas on how to propel this technology forward to enable its widespread adoption in order to achieve a breakthrough in the field of soil science and remote sensing. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A utilização de híbridos F1 é motivada pelas vantagens oferecidas aos produtores, destacando-se o aumento da produtividade. O objetivo deste trabalho foi avaliar o potencial produtivo de 12 linhagens endogâmicas (S5), obtidas a partir de autofecundações sucessivas de duas populações de pepino japonês: população RY (Rensei x Yoshinari) e população TT (Tsuyataro x Taisho) e de 18 híbridos experimentais, obtidos a partir do cruzamento entre estas linhagens no esquema de dialelo parcial circulante interpopulacional. O experimento foi conduzido de janeiro a abril de 2008, no delineamento de blocos ao acaso, com 33 tratamentos (18 híbridos experimentais, 12 linhagens e três híbridos comerciais: Tsuyataro, Taisho e Yoshinari), com quatro repetições e cinco plantas por parcela. Foram avaliadas as seguintes características: produção de frutos por planta, total e comercial, percentagem (%) de frutos comerciais, massa média de frutos comerciais, comprimento, diâmetro e relação entre comprimento e diâmetro (C/D) dos frutos. As médias foram agrupadas pelo teste de Scott Knott (5%). A linhagem (TT2) e seis híbridos experimentais (H16, H26, H11, H43, H54 e H15) foram tão ou mais produtivos que o melhor híbrido comercial, Tsuyataro. No geral, as heteroses para produção de frutos foram positivas e elevadas, enquanto, para as características de fruto (comprimento, diâmetro, relação C/D e massa média) foram de menor valor.