978 resultados para Guo zi jian (China)
Resumo:
Background Dengue fever has been a major public health concern in China since it re-emerged in Guangdong province in 1978. This study aimed to explore spatiotemporal characteristics of dengue fever cases for both indigenous and imported cases during recent years in Guangdong province, so as to identify high-risk areas of the province and thereby help plan resource allocation for dengue interventions. Methods Notifiable cases of dengue fever were collected from all 123 counties of Guangdong province from 2005 to 2010. Descriptive temporal and spatial analysis were conducted, including plotting of seasonal distribution of cases, and creating choropleth maps of cumulative incidence by county. The space-time scan statistic was used to determine space-time clusters of dengue fever cases at the county level, and a geographical information system was used to visualize the location of the clusters. Analysis were stratified by imported and indigenous origin. Results 1658 dengue fever cases were recorded in Guangdong province during the study period, including 94 imported cases and 1564 indigenous cases. Both imported and indigenous cases occurred more frequently in autumn. The areas affected by the indigenous and imported cases presented a geographically expanding trend over the study period. The results showed that the most likely cluster of imported cases (relative risk = 7.52, p < 0.001) and indigenous cases (relative risk = 153.56, p < 0.001) occurred in the Pearl River Delta Area; while a secondary cluster of indigenous cases occurred in one district of the Chao Shan Area (relative risk = 471.25, p < 0.001). Conclusions This study demonstrated that the geographic range of imported and indigenous dengue fever cases has expanded over recent years, and cases were significantly clustered in two heavily urbanised areas of Guangdong province. This provides the foundation for further investigation of risk factors and interventions in these high-risk areas.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Resumo:
Background Understanding the relationship between extreme weather events and childhood hand, foot and mouth disease (HFMD) is important in the context of climate change. This study aimed to quantify the relationship between extreme precipitation and childhood HFMD in Hefei, China, and further, to explore whether the association varied across urban and rural areas. Methods Daily data on HFMD counts among children aged 0–14 years from 2010 January 1st to 2012 December 31st were retrieved from Hefei Center for Disease Control and Prevention. Daily data on mean temperature, relative humidity and precipitation during the same period were supplied by Hefei Bureau of Meteorology. We used a Poisson linear regression model combined with a distributed lag non-linear model to assess the association between extreme precipitation (≥ 90th precipitation) and childhood HFMD, controlling for mean temperature, humidity, day of week, and long-term trend. Results There was a statistically significant association between extreme precipitation and childhood HFMD. The effect of extreme precipitation on childhood HFMD was the greatest at six days lag, with a 5.12% (95% confident interval: 2.7–7.57%) increase of childhood HFMD for an extreme precipitation event versus no precipitation. Notably, urban children and children aged 0–4 years were particularly vulnerable to the effects of extreme precipitation. Conclusions Our findings indicate that extreme precipitation may increase the incidence of childhood HFMD in Hefei, highlighting the importance of protecting children from forthcoming extreme precipitation, particularly for those who are young and from urban areas.
Resumo:
To study the relation between temperature and mortality by estimating the temperature-related mortality in Beijing, Shanghai, and Guangzhou. METHODS: Data of daily mortality, weather and air pollution in the three cities were collected. A distributed lag nonlinear model was established and used in analyzing the effects of temperature on mortality. Current and future net temperature-related mortality was estimated. RESULTS: The association between temperature and mortality was J-shaped, with an increased death risk of both hot and cold temperature in these cities. The effects of cold temperature on health lasted longer than those of hot temperature. The projected temperature-related mortality increased with the decreased cold-related mortality. The mortality was higher in Guangzhou than in Beijing and Shanghai. CONCLUSION: The impact of temperature on health varies in the 3 cities of China, which may have implications for climate policy making in China.
Resumo:
Background Little evidence is available about the association between temperature and cerebrovascular mortality in China. This study aims to examine the effects of ambient temperature on cerebrovascular mortality in different climatic zones in China. Method We obtained daily data on weather conditions, air pollution and cerebrovascular deaths from five cities (Beijing, Tianjin, Shanghai, Wuhan, and Guangzhou) in China during 2004-2008. We examined city-specific associations between ambient temperature and the cerebrovascular mortality, while adjusting for season, long-term trends, day of the week, relative humidity and air pollution. We examined cold effects using a 1°C decrease in temperature below a city-specific threshold, and hot effects using a 1°C increase in temperature above a city-specific threshold. We used a meta-analysis to summarize the cold and hot effects across the five cities. Results Beijing and Tianjin (with low mean temperature) had lower thresholds than Shanghai, Wuhan and Guangzhou (with high mean temperature). In Beijing, Tianjin, Wuhan and Guangzhou cold effects were delayed, while in Shanghai there was no or short induction. Hot effects were acute in all five cities. The cold effects lasted longer than hot effects. The hot effects were followed by mortality displacement. The pooled relative risk associated with a 1°C decrease in temperature below thresholds (cold effect) was 1.037 (95% confidence interval (CI): 1.020, 1.053). The pooled relative risk associated with a 1°C increase in temperature above thresholds (hot effect) was 1.014 (95% CI: 0.979, 1.050). Conclusion Cold temperatures are significantly associated with cerebrovascular mortality in China, while hot effect is not significant. People in colder climate cities were sensitive to hot temperatures, while people in warmer climate cities were vulnerable to cold temperature.
Resumo:
Limited studies have examined the associations between air pollutants [particles with diameters of 10um or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days’ average of concentrations, a 100 µg/m3 increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95%CI: 0.15–0.19), 0.53 mmol/L (95%CI: 0.42–0.65), and 0.11 mmol/L (95%CI: 0.07–0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues.