999 resultados para Gumbel Extreme Value Autoregressive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El remonte extremo o remonte del 2% es un parámetro clave en la ingeniería costera dado que permite acometer actuaciones en las playas bajo criterios de sostenibilidad económico y socioambiental. Estas actuaciones van desde el diseño de estructuras en el trasdós de la playa a planes de actuación urbanística en la costa tal que se determine adecuadamente los límites de dominio público. El adecuado diseño de estas actuaciones adquiere más relevancia hoy en día debido a las nuevas amenazas que se ponen de relieve debido al cambio climático, y que en el caso concreto de la costa se materializa en inundaciones que provocan pérdidas económicas. Estudios precedentes han realizado ensayos in situ o en modelo físico para la determinación del remonte extremo en playas. Al comparar estas formulaciones la dispersión es alta lo que implica que la precisión en la obtención del remonte no sea suficiente. Esta dispersión se justifica debido al amplio espectro de playas existentes y la alta variabilidad del clima marítimo. Este problema cobra más relevancia debido a las actuaciones preventivas o correctivas a acometer frente al cambio climático bajo un criterio de sostenibilidad. Con el fin de realizar actuaciones sostenibles bajo el contexto actual del probable aumento de inundaciones costeras por cambio climático no deben obtenerse ni magnitudes sobredimensionadas con el consecuente consumo de recursos y afección a las actividades económicas, ni magnitudes subestimadas que pongan en riesgo la estabilidad y/o la funcionalidad de las actuaciones para un periodo de diseño. El principal objetivo de esta tesis es proponer una formulación de aplicación en la obtención del remonte extremo tal que se cumplan los criterios de seguridad para el servicio y funcionalidad de la obra y los criterios de sostenibilidad económico y socio-ambiental que se requieren hoy en día. Es decir, una fórmula que no sobredimensione el cálculo de este valor pero que pueda cubrir la casuística que acontece en las distintas tipologías de playas. Complementariamente a este objetivo se ejemplifica la aplicación de estas formulaciones en casos reales tal que se reduzca la incertidumbre y ambigüedad en la obtención de las variables independientes de las formulaciones. Para la consecución de estos objetivos se realiza un estado del arte en el que se estudia tanto los estudios estadísticos en la obtención de este parámetro como los modelos numéricos propuestos para ello, tal que se deduzca la mejor línea de investigación en la consecución del fin de esta tesis. Tras este estudio del arte se concluye que la mejor línea de investigación sigue la vía estadística y se diseña un modelo físico con fondo de arena en contraste con modelos físicos con fondo impermeable fijo. Los resultados de dicho modelo se han comparado con las formulaciones precedentes y se proponen las fórmulas de aplicación más convenientes para la obtención del remonte extremo. Complementariamente a la propuesta de formulaciones se desarrolla una metodología de aplicación de dichas formulaciones a casos de la costa española que ejemplifican convenientemente su uso para una adecuada predicción de este valor en las playas. The extreme runup is a key parameter in coastal management. This parameter allows to develop sustainability actions at the coast that meet economical and environmental criteria. At the coast the actions can be either design of structures at the shore or actions plans delimiting reclamation areas. The climate change has given more relevance to accomplish an appropriate design for the coastal management actions. At the coast the threaten are mainly focused on more frequent floods that cause economic losses. Previous studies have carried out field or physical model experiments to accomplish an equation for the extreme runup prediction. Although dispersion remains high when comparing the different proposals so the accuracy in the prediction might be risky. This scattering comes from the wide sort of beaches and the high variability of the maritime climate. The new actions that are needed to develop to counteract the effects of the climate change need a more efficient criteria. Hence formulations should not overestimate or underestimate the values of the extreme runup. The overestimation implies to consume resources that are not needed and the underestimation means in a structure risk to support safely the loads. The main goal of this thesis is to propose a formulation for the extreme runup prediction so the safety of the structure can be accomplished but at the same time the sustainability of the action is ensured under economical and environmental criteria that are demanded nowadays. So the formulation does not overestimate the extreme value but cover with enough confidence the different sort of beaches. The application of the formulation is also explained in order to reduce uncertainty when the input values are obtained. In order to accomplish the goal of this research firstly a literature review is done. Statistical and numerical models are studied. The statistical model is selected as the most convenient research guideline. In order to obtain runup results a physical model with sand bed is carried out. The bed differs from those that used impermeable slope in previous experiments. Once the results are obtained they are compared with the previous equations and a final formulation is proposed. Finally a methodology to apply the deduced formulation to the Spanish beaches is addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of optimal local alignment scores of random sequences plays a vital role in evaluating the statistical significance of sequence alignments. These scores can be well described by an extreme-value distribution. The distribution’s parameters depend upon the scoring system employed and the random letter frequencies; in general they cannot be derived analytically, but must be estimated by curve fitting. For obtaining accurate parameter estimates, a form of the recently described ‘island’ method has several advantages. We describe this method in detail, and use it to investigate the functional dependence of these parameters on finite-length edge effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an approach for assessing the significance of sequence and structure comparisons by using nearly identical statistical formalisms for both sequence and structure. Doing so involves an all-vs.-all comparison of protein domains [taken here from the Structural Classification of Proteins (scop) database] and then fitting a simple distribution function to the observed scores. By using this distribution, we can attach a statistical significance to each comparison score in the form of a P value, the probability that a better score would occur by chance. As expected, we find that the scores for sequence matching follow an extreme-value distribution. The agreement, moreover, between the P values that we derive from this distribution and those reported by standard programs (e.g., blast and fasta validates our approach. Structure comparison scores also follow an extreme-value distribution when the statistics are expressed in terms of a structural alignment score (essentially the sum of reciprocated distances between aligned atoms minus gap penalties). We find that the traditional metric of structural similarity, the rms deviation in atom positions after fitting aligned atoms, follows a different distribution of scores and does not perform as well as the structural alignment score. Comparison of the sequence and structure statistics for pairs of proteins known to be related distantly shows that structural comparison is able to detect approximately twice as many distant relationships as sequence comparison at the same error rate. The comparison also indicates that there are very few pairs with significant similarity in terms of sequence but not structure whereas many pairs have significant similarity in terms of structure but not sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Final report for period 1 August 1972 to 30 September 1976."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62G32, 62G20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 62F10, 62F12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large broadening of short optical pulses due to fiber dispersion leads to a strong overlap in information data streams resulting in statistical deviations of the local power from its average. We present a theoretical analysis of rare events of high-intensity fluctuations-optical freak waves-that occur in fiber communication links using bit-overlapping transmission. Although the nature of the large fluctuations examined here is completely linear, as compared to commonly studied freak waves generated by nonlinear effects, the considered deviations inherit from rogue waves the key features of practical interest-random appearance of localized high-intensity pulses. We use the term "rogue wave" in an unusual context mostly to attract attention to both the possibility of purely linear statistical generation of huge amplitude waves and to the fact that in optics the occurrence of such pulses might be observable even with the standard Gaussian or even rarer-than-Gaussian statistics, without imposing the condition of an increased probability of extreme value events. © 2011 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis used four different methods in order to diagnose the precipitation extremes on Northeastern Brazil (NEB): Generalized Linear Model s via logistic regression and Poisson, extreme value theory analysis via generalized extre me value (GEV) and generalized Pareto (GPD) distributions and Vectorial Generalized Linea r Models via GEV (MVLG GEV). The logistic regression and Poisson models were used to identify the interactions between the precipitation extremes and other variables based on the odds ratios and relative risks. It was found that the outgoing longwave radiation was the indicator variable for the occurrence of extreme precipitation on eastern, northern and semi arid NEB, and the relative humidity was verified on southern NEB. The GEV and GPD distribut ions (based on the 95th percentile) showed that the location and scale parameters were presented the maximum on the eastern and northern coast NEB, the GEV verified a maximum core on western of Pernambuco influenced by weather systems and topography. The GEV and GPD shape parameter, for most regions the data fitted by Weibull negative an d Beta distributions (ξ < 0) , respectively. The levels and return periods of GEV (GPD) on north ern Maranhão (centerrn of Bahia) may occur at least an extreme precipitation event excee ding over of 160.9 mm /day (192.3 mm / day) on next 30 years. The MVLG GEV model found tha t the zonal and meridional wind components, evaporation and Atlantic and Pacific se a surface temperature boost the precipitation extremes. The GEV parameters show the following results: a) location ( ), the highest value was 88.26 ± 6.42 mm on northern Maran hão; b) scale ( σ ), most regions showed positive values, except on southern of Maranhão; an d c) shape ( ξ ), most of the selected regions were adjusted by the Weibull negative distr ibution ( ξ < 0 ). The southern Maranhão and southern Bahia have greater accuracy. The level period, it was estimated that the centern of Bahia may occur at least an extreme precipitatio n event equal to or exceeding over 571.2 mm/day on next 30 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense precipitation events (IPE) have been causing great social and economic losses in the affected regions. In the Amazon, these events can have serious impacts, primarily for populations living on the margins of its countless rivers, because when water levels are elevated, floods and/or inundations are generally observed. Thus, the main objective of this research is to study IPE, through Extreme Value Theory (EVT), to estimate return periods of these events and identify regions of the Brazilian Amazon where IPE have the largest values. The study was performed using daily rainfall data of the hydrometeorological network managed by the National Water Agency (Agência Nacional de Água) and the Meteorological Data Bank for Education and Research (Banco de Dados Meteorológicos para Ensino e Pesquisa) of the National Institute of Meteorology (Instituto Nacional de Meteorologia), covering the period 1983-2012. First, homogeneous rainfall regions were determined through cluster analysis, using the hierarchical agglomerative Ward method. Then synthetic series to represent the homogeneous regions were created. Next EVT, was applied in these series, through Generalized Extreme Value (GEV) and the Generalized Pareto Distribution (GPD). The goodness of fit of these distributions were evaluated by the application of the Kolmogorov-Smirnov test, which compares the cumulated empirical distributions with the theoretical ones. Finally, the composition technique was used to characterize the prevailing atmospheric patterns for the occurrence of IPE. The results suggest that the Brazilian Amazon has six pluvial homogeneous regions. It is expected more severe IPE to occur in the south and in the Amazon coast. More intense rainfall events are expected during the rainy or transitions seasons of each sub-region, with total daily precipitation of 146.1, 143.1 and 109.4 mm (GEV) and 201.6, 209.5 and 152.4 mm (GPD), at least once year, in the south, in the coast and in the northwest of the Brazilian Amazon, respectively. For the south Amazonia, the composition analysis revealed that IPE are associated with the configuration and formation of the South Atlantic Convergence Zone. Along the coast, intense precipitation events are associated with mesoscale systems, such Squall Lines. In Northwest Amazonia IPE are apparently associated with the Intertropical Convergence Zone and/or local convection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The L-moments based index-flood procedure had been successfully applied for Regional Flood Frequency Analysis (RFFA) for the Island of Newfoundland in 2002 using data up to 1998. This thesis, however, considered both Labrador and the Island of Newfoundland using the L-Moments index-flood method with flood data up to 2013. For Labrador, the homogeneity test showed that Labrador can be treated as a single homogeneous region and the generalized extreme value (GEV) was found to be more robust than any other frequency distributions. The drainage area (DA) is the only significant variable for estimating the index-flood at ungauged sites in Labrador. In previous studies, the Island of Newfoundland has been considered as four homogeneous regions (A,B,C and D) as well as two Water Survey of Canada's Y and Z sub-regions. Homogeneous regions based on Y and Z was found to provide more accurate quantile estimates than those based on four homogeneous regions. Goodness-of-fit test results showed that the generalized extreme value (GEV) distribution is most suitable for the sub-regions; however, the three-parameter lognormal (LN3) gave a better performance in terms of robustness. The best fitting regional frequency distribution from 2002 has now been updated with the latest flood data, but quantile estimates with the new data were not very different from the previous study. Overall, in terms of quantile estimation, in both Labrador and the Island of Newfoundland, the index-flood procedure based on L-moments is highly recommended as it provided consistent and more accurate result than other techniques such as the regression on quantile technique that is currently used by the government.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"In this paper we extend the earlier treatment of out-of-equilibrium mesoscopic fluctuations in glassy systems in several significant ways. First, via extensive simulations, we demonstrate that models of glassy behavior without quenched disorder display scalings of the probability of local two-time correlators that are qualitatively similar to that of models with short-ranged quenched interactions. The key ingredient for such scaling properties is shown to be the development of a criticallike dynamical correlation length, and not other microscopic details. This robust data collapse may be described in terms of a time-evolving "extreme value" distribution. We develop a theory to describe both the form and evolution of these distributions based on a effective sigma model approach."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An RVE–based stochastic numerical model is used to calculate the permeability of randomly generated porous media at different values of the fiber volume fraction for the case of transverse flow in a unidirectional ply. Analysis of the numerical results shows that the permeability is not normally distributed. With the aim of proposing a new understanding on this particular topic, permeability data are fitted using both a mixture model and a unimodal distribution. Our findings suggest that permeability can be fitted well using a mixture model based on the lognormal and power law distributions. In case of a unimodal distribution, it is found, using the maximum-likelihood estimation method (MLE), that the generalized extreme value (GEV) distribution represents the best fit. Finally, an expression of the permeability as a function of the fiber volume fraction based on the GEV distribution is discussed in light of the previous results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.