847 resultados para Grommes, I. B.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The awakening of national consciousness went hand in hand in Bohemia with an anxiety about national disappearance. In this context, the recourse to Pan-Slavism was for the Czechs a way to encourage themselves through the idea of belonging to a great Slavic world, while the Slavic Congress organized in Prague in 1848 was an attempt to realize this ideal. The Congress was a failure from the political point of view, but it did have some socio-cultural repercussions: notably, it served as a pretext for the advancement of women's issues in Bohemia. It is indeed in the wake of the Congress that Honorata z Winiowskich Zapová, a Polish women settled in Prague after her marriage to a Czech intellectual, founded, under the guise of collaboration between all Slavic women, the first women's association, as well as a (very short-lived) Czech-Polish institute, where Czech, as well as Polish girls, could get a quality education in their mother tongue. Honorata was undoubtedly the source of the polonophilia wind that seemed to blow over the Czech emancipation movement in the second half of the nineteenth century. In particular, Karolina Světlá showed in her Memoirs a great recognition for Honorata's efforts in matters of emancipation and education, and explicitly took up the challenge launched by the latter in founding another women's association and in inaugurating a school for underprivileged girls. But the tribute Světlá paid to Honorata is even more evident in her literary work, where Poland and the Polish woman (who often wears Honorata's features) play a significant role (see for example her short novel Sisters or her story A Few Days in the Life of a Prague Dandy). Světlá was probably the Czech feminist writer who, in her activities and in her work, relied most strongly on the Polish woman as a model for the Czech woman. However, she wasn't alone. In general, it was a characteristic of the Czech feminist movement of the second half of the nineteenth century to have recourse to the Polish woman and to Poland as a landmark for comparison and as a goal to be achieved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

av M. Ehrenpreis och Ragnar Josephson

Relevância:

90.00% 90.00%

Publicador:

Resumo:

av Hugo Valentin

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[Vorr.[[Elektronische Ressource]] : Ragnar Josephson]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nir Daṿid likhvod ha-rav he-ḥakham R. Daṿid Simonsen

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IB, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, and IB (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), and IB (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endoplasmic reticulum (ER) stress-induced inflammation plays an important role in the progression of many diseases, such as type II diabetes, insulin resistance, cancers, and so on. NF-κB is believed to be a central regulator of ER stress-induced inflammation. However, studies on how ER stress induces NF-κB activation are limited and, in some cases, controversial. In the present study, we utilized two commonly used ER stress inducers, thapsigargin and tunicamycin, to study the mechanism. We found that two caspase-recruitment domain (CARD)-containing proteins, CARMA3 and BCL10, play a crucial roles on ER stress-induced NF-κB activation by regulating IB kinase activity. Consistently, we observed that a physiological ER stress inducer, hypoxia, could activate NF-κB in a CARMA3-dependent manner. Additionally, we showed that the activation of the UPR signaling pathways were intact in both CARMA3- and BCL10-deficient cells under ER stress. Together, this study provides insight into the mechanism of how ER stress induces NF-κB activation. It allows us to better understand ER stress-induced inflammation and develop the corresponding therapeutic interference to treat diseases

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a computer program developed to run in a micro I.B.M.-P.C. wich incorporates some features in order to optimize the number of operations needed to compute the solution of plane potential problems governed by Laplace's equation by using the Boundary Integral Equation Method (B.I.E.M.). Also incorporated is a routine to plot isolines inside the domain under study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The possibility that bacteria may have evolved strategies to overcome host cell apoptosis was explored by using Rickettsia rickettsii, an obligate intracellular Gram-negative bacteria that is the etiologic agent of Rocky Mountain spotted fever. The vascular endothelial cell, the primary target cell during in vivo infection, exhibits no evidence of apoptosis during natural infection and is maintained for a sufficient time to allow replication and cell-to-cell spread prior to eventual death due to necrotic damage. Prior work in our laboratory demonstrated that R. rickettsii infection activates the transcription factor NF-κB and alters expression of several genes under its control. However, when R. rickettsii-induced activation of NF-κB was inhibited, apoptosis of infected but not uninfected endothelial cells rapidly ensued. In addition, human embryonic fibroblasts stably transfected with a superrepressor mutant inhibitory subunit IB that rendered NF-κB inactivatable also underwent apoptosis when infected, whereas infected wild-type human embryonic fibroblasts survived. R. rickettsii, therefore, appeared to inhibit host cell apoptosis via a mechanism dependent on NF-κB activation. Apoptotic nuclear changes correlated with presence of intracellular organisms and thus this previously unrecognized proapoptotic signal, masked by concomitant NF-κB activation, likely required intracellular infection. Our studies demonstrate that a bacterial organism can exert an antiapoptotic effect, thus modulating the host cell’s apoptotic response to its own advantage by potentially allowing the host cell to remain as a site of infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Members of the NF-κB/Rel and inhibitor of apoptosis (IAP) protein families have been implicated in signal transduction programs that prevent cell death elicited by the cytokine tumor necrosis factor α (TNF). Although NF-κB appears to stimulate the expression of specific protective genes, neither the identities of these genes nor the precise role of IAP proteins in this anti-apoptotic process are known. We demonstrate here that NF-κB is required for TNF-mediated induction of the gene encoding human c-IAP2. When overexpressed in mammalian cells, c-IAP2 activates NF-κB and suppresses TNF cytotoxicity. Both of these c-IAP2 activities are blocked in vivo by coexpressing a dominant form of IB that is resistant to TNF-induced degradation. In contrast to wild-type c-IAP2, a mutant lacking the C-terminal RING domain inhibits NF-κB induction by TNF and enhances TNF killing. These findings suggest that c-IAP2 is critically involved in TNF signaling and exerts positive feedback control on NF-κB via an IB targeting mechanism. Functional coupling of NF-κB and c-IAP2 during the TNF response may provide a signal amplification loop that promotes cell survival rather than death.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study we investigate the mRNA expression of inhibitory factor κB (IB) in cells of the rat brain induced by an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). IB controls the activity of nuclear factor κB, which regulates the transcription of many immune signal molecules. The detection of IB induction, therefore, would reveal the extent and the cellular location of brain-derived immune molecules in response to peripheral immune challenges. Low levels of IB mRNA were found in the large blood vessels and in circumventricular organs (CVOs) of saline-injected control animals. After an i.p. LPS injection (2.5 mg/kg), dramatic induction of IB mRNA occurred in four spatio-temporal patterns. Induced signals were first detected at 0.5 hr in the lumen of large blood vessels and in blood vessels of the choroid plexus and CVOs. Second, at 1–2 hr, labeling dramatically increased in the CVOs and choroid plexus and spread to small vascular and glial cells throughout the entire brain; these responses peaked at 2 hr and declined thereafter. Third, cells of the meninges became activated at 2 hr and persisted until 12 hr after the LPS injection. Finally, only at 12 hr, induced signals were present in ventricular ependyma. Thus, IB mRNA is induced in brain after peripheral LPS injection, beginning in cells lining the blood side of the blood–brain barrier and progressing to cells inside brain. The spatiotemporal patterns suggest that cells of the blood–brain barrier synthesize immune signal molecules to activate cells inside the central nervous system in response to peripheral LPS. The cerebrospinal fluid appears to be a conduit for these signal molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examined the mechanisms by which two different types of photonic radiation, short wavelength UV (UV-C) and γ radiation, activate transcription factor NF-κB. Exposure of mammalian cells to either form of radiation resulted in induction with similar kinetics of NF-κB DNA binding activity, nuclear translocation of its p65(RelA) subunit, and degradation of the major NF-κB inhibitor IB. In both cases, induction of NF-κB activity was attenuated by proteasome inhibitors and a mutation in ubiquitin-activating enzyme, suggesting that both UV-C and γ radiation induce degradation of IBs by means of the ubiquitin/proteasome pathway. However, although the induction of IB degradation by γ rays was dependent on its phosphorylation at Ser-32 and Ser-36, UV-C-induced IB degradation was not dependent on phosphorylation of these residues. Even the “super repressor” IB mutant, which contains alanines at positions 32 and 36, was still susceptible to UV-C-induced degradation. Correspondingly, we found that γ radiation led to activation of IKK, the protein kinase that phosphorylates IB at Ser-32 and Ser-36, whereas UV-C radiation did not. Furthermore, expression of a catalytically inactive IKKβ mutant prevented NF-κB activation by γ radiation, but not by UV-C. These results indicate that γ radiation and UV-C activate NF-κB through two distinct mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transcription factor NF-κB is a pivotal regulator of inflammatory responses. While the activation of NF-κB in the arthritic joint has been associated with rheumatoid arthritis (RA), its significance is poorly understood. Here, we examine the role of NF-κB in animal models of RA. We demonstrate that in vitro, NF-κB controlled expression of numerous inflammatory molecules in synoviocytes and protected cells against tumor necrosis factor α (TNFα) and Fas ligand (FasL) cytotoxicity. Similar to that observed in human RA, NF-κB was found to be activated in the synovium of rats with streptococcal cell wall (SCW)-induced arthritis. In vivo suppression of NF-κB by either proteasomal inhibitors or intraarticular adenoviral gene transfer of super-repressor IB profoundly enhanced apoptosis in the synovium of rats with SCW- and pristane-induced arthritis. This indicated that the activation of NF-κB protected the cells in the synovium against apoptosis and thus provided the potential link between inflammation and hyperplasia. Intraarticular administration of NF-kB decoys prevented the recurrence of SCW arthritis in treated joints. Unexpectedly, the severity of arthritis also was inhibited significantly in the contralateral, untreated joints, indicating beneficial systemic effects of local suppression of NF-κB. These results establish a mechanism regulating apoptosis in the arthritic joint and indicate the feasibility of therapeutic approaches to RA based on the specific suppression of NF-κB.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IB. However, IB reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IB. In contrast, T. parva mediated continuous degradation of IB resulting in persistently low cytoplasmic IB levels. Normal IB levels were only restored following T. parva killing, indicating that viable parasites are required for IB degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IB levels or NFκB activation, indicating that the parasite subverts the normal IB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Use of an NF-κB-dependent selectable marker facilitated the isolation of a cell line containing a cDNA encoding Act1, an NF-κB activator. Act1 associates with and activates IB kinase (IKK), leading to the liberation of NF-κB from its complex with IB. Many signaling pathways that liberate NF-κB also activate activating transcription factor (ATF) and activator protein 1 (AP-1) through Jun kinase (JNK). Act1 also activates JNK, suggesting that it might be part of a multifunctional complex involved in the activation of both NF-κB and JNK. Act1 fails to activate NF-κB in an IL-1-unresponsive mutant cell line in which all known signaling components are present, suggesting that it interacts with an unknown component in IL-1 signaling.