979 resultados para Gravity waves.
Resumo:
Acoustic Gravity waves (AGW) play an important role in balancing the atmospheric energy and momentum budget. Propagation of gravity wave in the atmosphere is one of the important factors of changing middle and upper atmosphere and ionosphere. The purpose of this dissertation is to study the propagation of gravity wave in a compression atmosphere whit means of numerical simulation and to analyze the response of middle and upper atmosphere to pulse disturbance from lower atmosphere. This work begins with the establishment of 2-D fully nonlinear compressible atmospheric dynamic model in polar coordinate, which is used ton numerically study gravity wave propagation. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. We also simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model and analyze the data we obtained by using Fourier Transform (FT), Short-time Fourier Transform (STFT) and Empirical Mode Decomposition (EMD) method which is an important part of Hilbert-Huang Transform (HHT). The research content is summarized in the following: 1. By using a two-dimensional full-implicit-continuous-Eulerian (FICE) scheme and taking the atmospheric basic motion equations as the governing equations, a numerical model for nonlinear propagation of acoustic gravity wave disturbance in two-dimensional polar coordinates is solved. 2. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. Results of numerical simulation show that the acoustic gravity wave packets propagate steadily upward and keep its shape well after several periods. 3. We simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model, and obtain the distribution of a certain physical quantity in time and space from earth’s surface to 300km above. The results reveal that the response of ionosphere occurs at a large horizontal distance from the source and the disturbance becomes greater with increasing of height. The situation when the direction of the background wind is opposite to or the same as the direction of disturbed velocity of gravity-wave is studied. The results show that gravity wave propagating against winds is easier than those propagating along winds and the background wind can accelerate gravity wave propagation. Just upon the source, an acoustic wave component with period of 6 min can be found. These images of simulation are similar to observations of the total electron content (TEC) disturbances caused by the great Sumatra-Andaman earthquake on December 26 in 2004. 4. Using the EMD method the disturbed velocity data of a certain physical quantity in time and space can be decomposed into a series of intrinsic mode function (IMF) and a trend mode respectively. The results of EMD reveal impact of the gravity wave frequency under the background winds.
Resumo:
Observations of waves, setup, and wave-driven mean flows were made on a steep coral forereef and its associated lagoonal system on the north shore of Moorea, French Polynesia. Despite the steep and complex geometry of the forereef, and wave amplitudes that are nearly equal to the mean water depth, linear wave theory showed very good agreement with data. Measurements across the reef illustrate the importance of including both wave transport (owing to Stokes drift), as well as the Eulerian mean transport when computing the fluxes over the reef. Finally, the observed setup closely follows the theoretical relationship derived from classic radiation stress theory, although the two parameters that appear in the model-one reflecting wave breaking, the other the effective depth over the reef crest-must be chosen to match theory to data. © 2013 American Meteorological Society.
Resumo:
O objectivo deste trabalho científico é o estudo do transporte vertical de momento linear horizontal (CMT) realizado por sistemas de nuvens de convecção profunda sobre o oceano tropical. Para realizar este estudo, foram utilizadas simulações tridimensionais produzidas por um modelo explícito de nuvens (CRM) para os quatro meses de duração da campanha observacional TOGA COARE que ocorreu sobre as águas quentes do Pacífico ocidental. O estudo foca essencialmente as características estatísticas e à escala da nuvem do CMT durante um episódio de fortes ventos de oeste e durante um período de tempo maior que incluí este evento de convecção profunda. As distribuições verticais e altitude-temporais de campos atmosféricos relacionados com o CMT são avaliadas relativamente aos campos observacionais disponíveis, mostrando um bom acordo com os resultados de estudos anteriores, confirmando assim a boa qualidade das primeiras e fornecendo a confiança necessária para continuar a investigação. A sensibilidade do CMT em relação do domínio espacial do model é analisada, utilizando dois tipos de simulações tridimensionais produzidas por domínios horizontais de diferente dimensão, sugerindo que o CMT não depende da dimensão do domínio espacial horizontal escolhido para simular esta variável. A capacidade da parameterização do comprimento de mistura simular o CMT é testada, destacando as regiões troposféricas onde os fluxos de momento linear horizontal são no sentido do gradiente ou contra o gradiente. Os fluxos no sentido do gradiente apresentam-se relacionados a uma fraca correlação entre os campos atmosféricos que caracterizam esta parameterização, sugerindo que as formulações dos fluxos de massa dentro da nuvem e o fenómeno de arrastamento do ar para dentro da nuvem devem ser revistos. A importância do ar saturado e não saturado para o CMT é estudada com o objectivo de alcançar um melhor entendimento acerca dos mecanismos físicos responsáveis pelo CMT. O ar não saturado e saturado na forma de correntes descendentes contribuem de forma determinante para o CMT e deverão ser considerados em futuras parameterizações do CMT e da convecção em nuvens cumulus. Métodos de agrupamento foram aplicados às contribuições do ar saturado e não saturado, analisando os campos da força de flutuação e da velocidade vertical da partícula de ar, concluindo-se a presença de ondas gravíticas internas como mecanismo responsável pelo ar não saturado. A força do gradiente de pressão dentro da nuvem é também avaliada, utilizando para este efeito a fórmula teórica proposta por Gregory et al. (1997). Uma boa correlação entre esta força e o produto entre efeito de cisalhamento do vento e a perturbação da velocidade vertical é registada, principalmente para as correntes ascendentes dentro da nuvem durante o episódio de convecção profunda. No entanto, o valor ideal para o coeficiente empírico c*, que caracteriza a influência da força do gradiente de pressão dentro da nuvem sobre a variação vertical da velocidade horizontal dentro da nuvem, não é satisfatoriamente alcançado. Bons resultados são alcançados através do teste feito à aproximação do fluxo de massa proposta por Kershaw e Gregory (1997) para o cálculo do CMT total, revelando mais uma vez a importância do ar não saturado para o CMT.
Tropical Mesoscale Convective Systems and Associated Energetics : Observational and Modeling Studies
Resumo:
The main purpose of the thesis is to improve the state of knowledge and understanding of the physical structure of the TMCS and its short range prediction. The present study principally addresses the fine structure, dynamics and microphysics of severe convective storms.The structure and dynamics of the Tropical cloud clusters over Indian region is not well understood. The observational cases discussed in the thesis are limited to the temperature and humidity observations. We propose a mesoscale observational network along with all the available Doppler radars and other conventional and non—conventional observations. Simultaneous observations with DWR, VHF and UHF radars of the same cloud system will provide new insight into the dynamics and microphysics of the clouds. More cases have to be studied in detail to obtain climatology of the storm type passing over tropical Indian region. These observational data sets provide wide variety of information to be assimilated to the mesoscale data assimilation system and can be used to force CSRM.The gravity wave generation and stratosphere troposphere exchange (STE) processes associated with convection gained a great deal of attention to modem science and meteorologist. Round the clock observations using VHF and UHF radars along with supplementary data sets like DWR, satellite, GPS/Radiosondes, meteorological rockets and aircrafl observations is needed to explore the role of convection and associated energetics in detail.
Resumo:
Tsunamis are water waves generated by a sudden vertical displacement of the water surface. They are waves generated in the ocean by the disturbance associated with seismic activity, under sea volcanic eruptions, submarine landslides, nuclear explosion or meteorite impacts with the ocean. These waves are generated in the ocean and travel into coastal bays, gulfs, estuaries and rivers. These waves travel as gravity waves with a velocity dependent on water depth. The term tsunami is Japanese and means harbour (tsu) and wave (nami). It has been named so because such waves often develop resonant phenomena in harbours after offshore earthquakes.
Resumo:
Sudden stratospheric warmings (SSWs) are usually considered to be initiated by planetary wave activity. Here it is asked whether small-scale variability (e.g., related to gravity waves) can lead to SSWs given a certain amount of planetary wave activity that is by itself not sufficient to cause a SSW. A highly vertically truncated version of the Holton–Mass model of stratospheric wave–mean flow interaction, recently proposed by Ruzmaikin et al., is extended to include stochastic forcing. In the deterministic setting, this low-order model exhibits multiple stable equilibria corresponding to the undisturbed vortex and SSW state, respectively. Momentum forcing due to quasi-random gravity wave activity is introduced as an additive noise term in the zonal momentum equation. Two distinct approaches are pursued to study the stochastic system. First, the system, initialized at the undisturbed state, is numerically integrated many times to derive statistics of first passage times of the system undergoing a transition to the SSW state. Second, the Fokker–Planck equation corresponding to the stochastic system is solved numerically to derive the stationary probability density function of the system. Both approaches show that even small to moderate strengths of the stochastic gravity wave forcing can be sufficient to cause a SSW for cases for which the deterministic system would not have predicted a SSW.
Resumo:
Approximations to the scattering of linear surface gravity waves on water of varying quiescent depth are Investigated by means of a variational approach. Previous authors have used wave modes associated with the constant depth case to approximate the velocity potential, leading to a system of coupled differential equations. Here it is shown that a transformation of the dependent variables results in a much simplified differential equation system which in turn leads to a new multi-mode 'mild-slope' approximation. Further, the effect of adding a bed mode is examined and clarified. A systematic analytic method is presented for evaluating inner products that arise and numerical experiments for two-dimensional scattering are used to examine the performance of the new approximations.
Resumo:
This paper considers the relationship between the mean temperature and humidity profiles and the fluxes of heat and moisture at cloud base and the base of the inversion in the cumulus-capped boundary layer. The relationships derived are based on an approximate form of the scalar-flux budget and the scaling properties of the turbulent kinetic energy (TKE) budget. The scalar-flux budget gives a relationship between the change in the virtual potential temperature across either the cloud base transition zone or the inversion and the flux at the base of the layer. The scaling properties of the TKE budget lead to a relationship between the heat and moisture fluxes and the mean subsaturation through the liquid-water flux. The 'jump relation' for the virtual potential temperature at cloud base shows the close connection between the cumulus mass flux in the cumulus-capped boundary layer and the entrainment velocity in the dry-convective boundary layer. Gravity waves are shown to be an important feature of the inversion.
Resumo:
A connection between thunderstorms and the ionosphere has been hypothesized since the mid-1920s(1). Several mechanisms have been proposed to explain this connection(2-7), and evidence from modelling(8) as well as various types of measurements(9-14) demonstrate that lightning can interact with the lower ionosphere. It has been proposed, on the basis of a few observed events(15), that the ionospheric 'sporadic E' layer - transient, localized patches of relatively high electron density in the mid-ionosphere E layer, which significantly affect radio-wave propagation - can be modulated by thunderstorms, but a more formal statistical analysis is still needed. Here we identify a statistically significant intensification and descent in altitude of the mid-latitude sporadic E layer directly above thunderstorms. Because no ionospheric response to low-pressure systems without lightning is detected, we conclude that this localized intensification of the sporadic E layer can be attributed to lightning. We suggest that the co-location of lightning and ionospheric enhancement can be explained by either vertically propagating gravity waves that transfer energy from the site of lightning into the ionosphere, or vertical electrical discharge, or by a combination of these two mechanisms.
Resumo:
A global archive of high-resolution (3-hourly, 0.58 latitude–longitude grid) window (11–12 mm) brightness temperature (Tb) data from multiple satellites is being developed by the European Union Cloud Archive User Service (CLAUS) project. It has been used to construct a climatology of the diurnal cycle in convection, cloudiness, and surface temperature for all regions of the Tropics. An example of the application of the climatology to the evaluation of the climate version of the U.K. Met. Office Unified Model (UM), version HadAM3, is presented. The characteristics of the diurnal cycle described by the CLAUS data agree with previous observational studies, demonstrating the universality of the characteristics of the diurnal cycle for land versus ocean, clear sky versus convective regimes. It is shown that oceanic deep convection tends to reach its maximum in the early morning. Continental convection generally peaks in the evening, although there are interesting regional variations, indicative of the effects of complex land–sea and mountain–valley breezes, as well as the life cycle of mesoscale convective systems. A striking result from the analysis of the CLAUS data has been the extent to which the strong diurnal signal over land is spread out over the adjacent oceans, probably through gravity waves of varying depths. These coherent signals can be seen for several hundred kilometers and in some instances, such as over the Bay of Bengal, can lead to substantial diurnal variations in convection and precipitation. The example of the use of the CLAUS data in the evaluation of the Met. Office UM has demonstrated that the model has considerable difficulty in capturing the observed phase of the diurnal cycle in convection, which suggests some fundamental difficulties in the model’s physical parameterizations. Analysis of the diurnal cycle represents a powerful tool for identifying and correcting model deficiencies.
Resumo:
Recent research has shown that Lighthill–Ford spontaneous gravity wave generation theory, when applied to numerical model data, can help predict areas of clear-air turbulence. It is hypothesized that this is the case because spontaneously generated atmospheric gravity waves may initiate turbulence by locally modifying the stability and wind shear. As an improvement on the original research, this paper describes the creation of an ‘operational’ algorithm (ULTURB) with three modifications to the original method: (1) extending the altitude range for which the method is effective downward to the top of the boundary layer, (2) adding turbulent kinetic energy production from the environment to the locally produced turbulent kinetic energy production, and, (3) transforming turbulent kinetic energy dissipation to eddy dissipation rate, the turbulence metric becoming the worldwide ‘standard’. In a comparison of ULTURB with the original method and with the Graphical Turbulence Guidance second version (GTG2) automated procedure for forecasting mid- and upper-level aircraft turbulence ULTURB performed better for all turbulence intensities. Since ULTURB, unlike GTG2, is founded on a self-consistent dynamical theory, it may offer forecasters better insight into the causes of the clear-air turbulence and may ultimately enhance its predictability.
Resumo:
A new parameterisation is described that predicts the temperature perturbations due to sub-grid scale orographic gravity waves in the atmosphere of the 19 level HadAM3 version of the United Kingdom Met Office Unified Model. The explicit calculation of the wave phase allows the sign of the temperature perturbation to be predicted. The scheme is used to create orographic clouds, including cirrus, that were previously absent in model simulations. A novel approach to the validation of this parameterisation makes use of both satellite observations of a case study, and a simulation in which the Unified Model is nudged towards ERA-40 assimilated winds, temperatures and humidities. It is demonstrated that this approach offers a feasible way of introducing large scale orographic cirrus clouds into GCMs.
Resumo:
A method is suggested for the calculation of the friction velocity for stable turbulent boundary-layer flow over hills. The method is tested using a continuous upstream mean velocity profile compatible with the propagation of gravity waves, and is incorporated into the linear model of Hunt, Leibovich and Richards with the modification proposed by Hunt, Richards and Brighton to include the effects of stability, and the reformulated solution of Weng for the near-surface region. Those theoretical results are compared with results from simulations using a non-hydrostatic microscale-mesoscale two-dimensional numerical model, and with field observations for different values of stability. These comparisons show a considerable improvement in the behaviour of the theoretical model when the friction velocity is calculated using the method proposed here, leading to a consistent variation of the boundary-layer structure with stability, and better agreement with observational and numerical data.
Resumo:
The impact of the variation of the Coriolis parameter f on the drag exerted by internal Rossby-gravity waves on elliptical mountains is evaluated using linear theory, assuming constant wind and static stability and a beta-plane approximation. Previous calculations of inertia-gravity wave drag are thus extended in an attempt to establish a connection with existing studies on planetary wave drag, developed primarily for fluids topped by a rigid lid. It is found that the internal wave drag for zonal westerly flow strongly increases relative to that given by the calculation where f is assumed to be a constant, particularly at high latitudes and for mountains aligned meridionally. Drag increases with mountain width for sufficiently wide mountains, reaching values much larger than those valid in the non-rotating limit. This occurs because the drag receives contributions from a low wavenumber range, controlled by the beta effect, which accounts for the drag amplification found here. This drag amplification is shown to be considerable for idealized analogues of real mountain ranges, such as the Himalayas and the Rocky mountains, and comparable to the barotropic Rossby wave drag addressed in previous studies.