972 resultados para Gravity and Quantization
Resumo:
We review the current status of our knowledge of cosmic velocity fields, on both small and large scales. A new statistic is described that characterizes the incoherent, thermal component of the velocity field on scales less than 2h−1 Mpc (h is H0/100 km·s−1·Mpc−1, where H0 is the Hubble constant and 1 Mpc = 3.09 × 1022 m) and smaller. The derived velocity is found to be quite stable across different catalogs and is of remarkably low amplitude, consistent with an effective Ω ∼ 0.15 on this scale. We advocate the use of this statistic as a standard diagnostic of the small-scale kinetic energy of the galaxy distribution. The analysis of large-scale flows probes the velocity field on scales of 10–60 h−1 Mpc and should be adequately described by linear perturbation theory. Recent work has focused on the comparison of gravity or density fields derived from whole-sky redshift surveys of galaxies [e.g., the Infrared Astronomical Satellite (IRAS)] with velocity fields derived from a variety of sources. All the algorithms that directly compare the gravity and velocity fields suggest low values of the density parameter, while the POTENT analysis, using the same data but comparing the derived IRAS galaxy density field with the Mark-III derived matter density field, leads to much higher estimates of the inferred density. Since the IRAS and Mark-III fields are not fully consistent with each other, the present discrepancies might result from the very different weighting applied to the data in the competing methods.
Resumo:
Geophysical data acquired using R/V Polarstern constrain the structure and age of the rifted oceanic margin of West Antarctica. West of the Antipodes Fracture Zone, the 145 km wide continent-ocean transition zone (COTZ) of the Marie Byrd Land sector resembles a typical magma-poor margin. New gravity and seismic reflection data indicates initial continental crust of thickness 24 km, that was stretched 90 km. Farther east, the Bellingshausen sector is broad and complex with abundant evidence for volcanism, the COTZ is ~670 km wide, and the nature of crust within the COTZ is uncertain. Margin extension is estimated to be 106-304 km in this sector. Seafloor magnetic anomalies adjacent to Marie Byrd Land near the Pahemo Fracture Zone indicate full-spreading rate during c33-c31 (80-68 Myr) of 60 mm/yr, increasing to 74 mm/yr at c27 (62 Myr), and then dropping to 22 mm/yr by c22 (50 Myr). Spreading rates were lower to the west. Extrapolation towards the continental margin indicates initial oceanic crust formation at around c34y (84 Myr). Subsequent motion of the Bellingshausen plate relative to Antarctica (84-62 Myr) took place east of the Antipodes Fracture Zone at rates <40 mm/yr, typically 5-20 mm/yr. The high extension rate of 30-60 mm/yr during initial margin formation is consistent with steep and symmetrical margin morphology, but subsequent motion of the Bellingshausen plate was slow and complex, and modified rift morphology through migrating deformation and volcanic centers to create a broad and complex COTZ.
Resumo:
This thesis presents the design, fabrication and testing of novel grating based Optical Fibre Sensor (OFS) systems being interrogated using “off the shelf” interrogation systems, with the eventual development of marketable commercial systems at the forefront of the research. Both in the industrial weighing and aerospace industries, there has been a drive to investigate the feasibility of using optical fibre sensors being deployed where traditionally their electrical or mechanical counterparts would traditionally have been. Already, in the industrial weighing industry, commercial operators are deploying OFS-based Weigh-In-Motion (WIM) systems. Likewise, in the aerospace industry, OFS have been deployed to monitor such parameters as load history, impact detection, structural damage, overload detection, centre of gravity and the determination of blade shape. Based on the intrinsic properties of fibre Bragg gratings (FBGs) and Long Period Fibre Gratings (LPFGs), a number of novel OFS-based systems have been realised. Experimental work has shown that in the case of static industrial weighing, FBGs can be integrated with current commercial products and used to detect applied loads. The work has also shown that embedding FBGs in e-glass, to form a sensing patch, can result in said patches being bonded to rail track, forming the basis of an FBG-based WIM system. The results obtained have been sufficiently encouraging to the industrial partner that this work will be progressed beyond the scope of the work presented in this thesis. Likewise, and to the best of the author’s knowledge, a novel Bragg grating based systems for aircraft fuel parameter sensing has been presented. FBG-based pressure sensors have been shown to demonstrate good sensitivity, linearity and repeatability, whilst LPFG-based systems have demonstrated a far greater sensitivity when compared to FBGs, as well the advantage of being potentially able to detect causes of fuel adulteration based on their sensitivity to refractive index (RI). In the case of the LPFG-based system, considerable work remains to be done on the mechanical strengthening to improve its survivability in a live aircraft fuel tank environment. The FBG system has already been developed to an aerospace compliant prototype and is due to be tested at the fuel testing facility based at Airbus, Filton, UK. It is envisaged by the author that in both application areas, continued research in this area will lead to the eventual development of marketable commercial products.
Resumo:
The aim of this work is to contribute to the analysis and characterization of training with whole body vibration (WBV) and the resultant neuromuscular response. WBV aims to mechanically activate muscle by eliciting stretch reflexes. Generally, surface electromyography is utilized to assess muscular response elicited by vibrations. However, EMG analysis could potentially bring to erroneous conclusions if not accurately filtered. Tiny and lightweight MEMS accelerometers were found helpful in monitoring muscle motion. Displacements were estimated integrating twice the acceleration data after gravity and small postural subject adjustments contribution removal. Results showed the relevant presence of motion artifacts on EMG recordings, the high correlation between muscle motion and EMG activity and how resonance frequencies and dumping factors depended on subject and his positioning onto the vibrating platform. Stimulations at the resonant frequency maximize muscles lengthening and in turn, muscle spindle solicitation , which may produce more muscle activation. Local mechanical stimulus characterization (Le, muscle motion analysis) could be meaningful in discovering proper muscle stimulation and may contribute to suggest appropriate and effective WBV exercise protocols. ©2009 IEEE.
Resumo:
A 100 cm long sediment sequence was recovered from Beaver Lake in Amery Oasis, East Antarctica, using gravity and piston corers. Sedimentological and mineralogical analyses and the absence of micro and macrofossils indicate that the sediments at the base of the sequence formed under glacial conditions, probably prior to c. 12 500 cal. yr BP. The sediments between c. 81 and 31 cm depth probably formed under subaerial conditions, indicating that isostatic uplift since deglaciation has been substantially less than eustatic sea-level rise and that large areas of the present-day floor of Beaver Lake must have been subaerially exposed following deglaciation. The upper 31 cm of the sediment sequence were deposited under glaciomarine conditions similar to those of today, supporting geomorphic observations that the Holocene was a period of relative sea-level highstand in Amery Oasis.
Resumo:
The origin and modes of transportation and deposition of inorganic sedimentary material of the Black Sea were studied in approximately 60 piston, gravity, and Kasten cores. The investigation showed that the sediment derived from the north and northwest (especially from the Danube) has a low calcite-dolomite ratio and a high quartz-feldspar ratio. Rock fragments are generally not abundant; garnet is the principal heavy mineral and illite is the predominant clay mineral. This sedimentary material differs markedly from that carried by Anatolian rivers, which is characterized by a high calcite-dolomite ratio and a low quartz-feldspar ratio. Rock fragments are abundant; pyroxene is the principal heavy mineral and montmorillonite is the predominant clay mineral. In generel, the clay fraction is large in all sediments (27.6-86.9 percent), and the lateral distributian indicates an increase in clay consent from the coasts toward two centers in the western and eastern Black Sea basin. Illite is the most common clay mineral in the Black Sea sediments. The lateral changes in composition of the clay mineral can easily be traced to the petrologic character of northern (rich in illite) and southern (rich in montmorillonite) source areas. In almost all cores, a rhythmic change of the montmorillonite-illite ratio with depth was observed. These changes may be related to the changing influence of the two provinces during the Holocene and late Pleistocene. Higher montmorillonite content seems to indicate climctic changes, probably stages of glaciation end permafrost in the northern area, at which time the illite supply was diminished to a large extent. The composition of the sand fraction is relatad to the different petrologic and morphologic characteristics of two major source provimces: (1) a northern province (rich in quartz, feldspars, and garnet) characterized by a low elevation, comprising the Danube basin area and the rivers draining the Russian platform; and (2) a southern province (rich in pyroxene and volcanic and metamorphic rocks) in the mountainous region of Anatolia and the Caucasus, characterized by small but extremely erosive rivers. The textural properties (graded bedding) of the deep-sea send layers clearly suggest deposition from turbidity currents. The carbonate content of the contemporary sediments ranges from 5 to 65 percent. It increases from the coast to a maximum in two centers in the western and eastern basin. This pattern reflects the distribution of the <2-µm fraction. The contemporary mud sedimentation is governed by two important factors: (1) the deposition of terrigenous allochthonous material of low carbonate content originating from the surrounding hinterland (northern and southern source areas), and (2) the autochthonous production of large quantities of biogenic calcite by coccolithophores during the last period of about 3,000-4,000 years.
Resumo:
Optimal assistance of an adult, adapted to the current level of understanding of the student (scaffolding), can help students with emotional and behavioural problems (EBD) to demonstrate a similar level of understanding on scientific tasks, compared to students from regular education (Van Der Steen, Steenbeek, Wielinski & Van Geert, 2012). In the present study the optimal scaffolding techniques for EBD students were investigated, as well as how these differ from scaffolding techniques used for regular students. A researcher visited five EBD students and five regular students (aged three to six years old) three times in a 1,5 years period. Student and researcher worked together on scientific tasks about gravity and air pressure, while the researcher asked questions. An adaptive protocol was used, so that all children were asked the same basic questions about the mechanisms of the task. Beside this, the researcher was also allowed to ask follow-up questions and use scaffolding methods when these seemed necessary. We found a bigger amount of scaffolding in the group of EBD students compared to the regular students. The scaffolding techniques that were used also differed between the two groups. For EBD students, we saw more scaffolding strategies focused on keeping the student committed to the task, and less strategies aimed at the relationship between the child and the researcher. Furthermore, in the group of regular students we saw a decreasing trend in the amount of scaffolding over the course of three visits. This trend was not visible for the EBD students. These results highlight the importance for using different scaffolding strategies when working with EBD students compared to regular students. Future research can give a clearer image of the differences in scaffolding needs between these two groups.
Resumo:
A validation study examined the accuracy of a purpose-built single photon absorptiometry (SPA) instrument for making on-farm in vivo measurements of bone mineral density (BMD) in tail bones of cattle. In vivo measurements were made at the proximal end of the ninth coccygeal vertebra (Cy9) in steers of two age groups (each n = 10) in adequate or low phosphorus status. The tails of the steers were then resected and the BMD of the Cy9 bone was measured in the laboratory with SPA on the resected tails and then with established laboratory procedures on defleshed bone. Specific gravity and ash density were measured on the isolated Cy9 vertebrae and on 5-mm2 dorso-ventral cores of bone cut from each defleshed Cy9. Calculated BMD determined by SPA required a measure of tail bone thickness and this was estimated as a fraction of total tail thickness. Actual tail bone thickness was also measured on the isolated Cy9 vertebrae. The accuracy of measurement of BMD by SPA was evaluated by comparison with the ash density of the bone cores measured in the laboratory. In vivo SPA measurements of BMD were closely correlated with laboratory measurements of core ash density (r = 0.92). Ash density and specific gravity of cores, and all SPA measures of BMD, were affected by phosphorus status of the steers, but the effect of steer age was only significant (P < 0.05) for steers in adequate phosphorus status. The accuracy of SPA to determine BMD of tail bone may be improved by reducing error associated with in vivo estimation of tail bone thickness, and also by adjusting for displacement of soft tissue by bone mineral. In conclusion a purpose-built SPA instrument could be used to make on-farm sequential non-invasive in vivo measurements of the BMD of tailbone in cattle with accuracy acceptable for many animal studies.
Resumo:
Using a model derived from lubrication theory, we consider the evolution of a thin viscous film coating the interior or exterior of a cylindrical tube. The flow is driven by surface tension and gravity and the liquid is assumed to wet the cylinder perfectly. When the tube is horizontal, we use large-time simulations to describe the bifurcation structure of the capillary equilibria appearing at low Bond number. We identify a new film configuration in which an isolated dry patch appears at the top of the tube and demonstrate hysteresis in the transition between rivulets and annular collars as the tube length is varied. For a tube tilted to the vertical, we show how a long initially uniform rivulet can break up first into isolated drops and then annular collars, which subsequently merge. We also show that the speed at which a localized drop moves down the base of a tilted tube is non-monotonic in tilt angle.
Resumo:
Background: The presence of body posture changes among patients with temporomandibular disorders (TMD) has been a controversial issue in the literature, in which it supporters point out the muscular origin as the main etiological factors, mainly associated with postural changes in head. Due to this controversy, it is pertinent to check whether this relationship exists on the most common etiology of TMD, the disk displacement, which translates a biomechanical internal disorder of the temporomandibular joint (TMJ). Objectives: Assess body posture changes in subjects with internal derangement of the TMJ when compared to subjects without this biomechanical dysfunction, characterize the patterns of the jaw movements and assess to the muscle activation during jaw movements. Methods: 21 subjects with TMJ disc displacement (DD) (test group) and 21 subjects without any TMD (control group) was assessed for body posture changes through evaluation of several body segments by posturography and also was evaluated the postural balance reactions through the center of mass during jaw movements using a balance platform. For the characterization of the jaw movement patterns it was done a kinematic analysis during jaw movements (active ROM and path of the jaw). For the muscle activation during jaw movements it was evaluated the masseter, sternocleidomastoid and spinae erector muscles by surface electromyography (EMG). Results Discussion: Both groups show forward head posture and extension of the cervical spine, not noticing any other significant body posture changes in subjects with DD, and if we had to see in detail, in general, subjects without TMD shows more body posture changes than subjects with DD. The pattern of jaw movements is similar in both groups, but in subjects with DD the closing movements are more instable than the opening movements, related to a less effective movement control to counteract the force of gravity and the disk displacement. The bilateral muscle activation during jaw movements is higher in subjects with DD, likely related to a less stable pattern of movement which leads in a higher muscle activation to guide the movement and ensure the best as possible articular stability. Conclusion: The disk displacement with reduction should be viewed as part of a set of signs and symptoms that require an accurate musculoskeletal and psychosocial assessment towards an earlier diagnosis for reduction and control of the functional limiting factors. In this direction, it seems that the relevant set of limiting signs and symptoms deserve a particular attention by health care practitioners involved in the assessment and treatment of TMD, in order to define effective therapeutic options.
Resumo:
This thesis studies mobile robotic manipulators, where one or more robot manipulator arms are integrated with a mobile robotic base. The base could be a wheeled or tracked vehicle, or it might be a multi-limbed locomotor. As robots are increasingly deployed in complex and unstructured environments, the need for mobile manipulation increases. Mobile robotic assistants have the potential to revolutionize human lives in a large variety of settings including home, industrial and outdoor environments.
Mobile Manipulation is the use or study of such mobile robots as they interact with physical objects in their environment. As compared to fixed base manipulators, mobile manipulators can take advantage of the base mechanism’s added degrees of freedom in the task planning and execution process. But their use also poses new problems in the analysis and control of base system stability, and the planning of coordinated base and arm motions. For mobile manipulators to be successfully and efficiently used, a thorough understanding of their kinematics, stability, and capabilities is required. Moreover, because mobile manipulators typically possess a large number of actuators, new and efficient methods to coordinate their large numbers of degrees of freedom are needed to make them practically deployable. This thesis develops new kinematic and stability analyses of mobile manipulation, and new algorithms to efficiently plan their motions.
I first develop detailed and novel descriptions of the kinematics governing the operation of multi- limbed legged robots working in the presence of gravity, and whose limbs may also be simultaneously used for manipulation. The fundamental stance constraint that arises from simple assumptions about friction and the ground contact and feasible motions is derived. Thereafter, a local relationship between joint motions and motions of the robot abdomen and reaching limbs is developed. Baseeon these relationships, one can define and analyze local kinematic qualities including limberness, wrench resistance and local dexterity. While previous researchers have noted the similarity between multi- fingered grasping and quasi-static manipulation, this thesis makes explicit connections between these two problems.
The kinematic expressions form the basis for a local motion planning problem that that determines the joint motions to achieve several simultaneous objectives while maintaining stance stability in the presence of gravity. This problem is translated into a convex quadratic program entitled the balanced priority solution, whose existence and uniqueness properties are developed. This problem is related in spirit to the classical redundancy resoxlution and task-priority approaches. With some simple modifications, this local planning and optimization problem can be extended to handle a large variety of goals and constraints that arise in mobile-manipulation. This local planning problem applies readily to other mobile bases including wheeled and articulated bases. This thesis describes the use of the local planning techniques to generate global plans, as well as for use within a feedback loop. The work in this thesis is motivated in part by many practical tasks involving the Surrogate and RoboSimian robots at NASA/JPL, and a large number of examples involving the two robots, both real and simulated, are provided.
Finally, this thesis provides an analysis of simultaneous force and motion control for multi- limbed legged robots. Starting with a classical linear stiffness relationship, an analysis of this problem for multiple point contacts is described. The local velocity planning problem is extended to include generation of forces, as well as to maintain stability using force-feedback. This thesis also provides a concise, novel definition of static stability, and proves some conditions under which it is satisfied.
Resumo:
ABSTRACT In the last years, several models were presented trying to obtain lithosphere and Moho thickness in the Iberian Peninsula, using data related to geoid elevation and topography, gravity, seismicity and thermal analysis. The results obtained show a decrease in the thickness of the crust and the lithosphere in the SW part of the Iberian Peninsula. Density anomalies in the crust are also referred. The work I intend to present is related with the south of the Ossa Morena Zone, the South Portuguese Zone and the Algarve, in the south of Portugal. Data obtained in the region was collected and deviations from average values used were detected. Models were made taking into account the specific characteristics of the region. Heat flow, thermal conductivity, heat production, topography, gravity, seismic and geological data available for the region, are used to adapt the models. A special attention will be given to the spatial variation of heat flow values and to Moho depth in the region. The results show that this region is different from other parts of the Iberian Peninsula and a special attention must be given to it. The different values obtained using seismic, gravity, and geoid height data, and the results obtained with models using thermal data shows the importance of trying to know and understand the thermal structure of the regions. Problems related with the use of average values will be focused.
Resumo:
In this Thesis work we investigate some of different cosmological background scenarios using one of the main probes used in cosmology: the halo mass function. The observed abundance of galaxy clusters (or similarly DM haloes) can indeed be compared to its theoretical predictions to derive fundamental constrains on the cosmological scenario assumed. Given the importance of exploring and constraining models degenerate with the ΛCDM one, we test the applicability of some notable halo mass function models to these scenarios. To this purpose, we made use of the DUSTGRAIN-pathfinder N-body simulations, which assume cosmological scenarios that include modified gravity in the form of f(R) models and massive neutrinos. We carried on the analysis of 3 simulation snapshots at different redshifts, z = 0, 0.5, 1, building multiple samples of dark matter haloes by applying different overdensity thresholds during the procedure of halo identification. We started our analysis by considering the halo mass function model introduced by Despali et al. (2016), who proposed a parametrization that encapsulates the effect of the different halo mass definitions and the relative evolution with the redshift. We calibrated the main parameters of this relation by using the ΛCDM halo catalogues extracted from the DUSTGRAIN-pathfinder simulations, fitting the measured halo abundances at all redshifts and density thresholds. Afterwards we tested the same model parametrization with halo catalogues extracted from the simulations implementing both modified gravity and massive neutrinos. We repeated therefore the calibration procedure on these data to search for discrepancies with respect to the ΛCDM model. Finally we focused the analysis on the cosmological models implementing modified gravity only. We took our ΛCDM calibrated halo mass function and we modified it with the additional f (R) gravity form proposed by Gupta et al. (2022).
Resumo:
The utilization of wood from reforested species by the furniture industry is a recent trend. Thus, the present study determined the specific gravity and shrinkage of wood of 18-year-old Eucalyptus grandis, Eucalyptus dunnii and Eucalyptus urophylla, for use as components in solid wood furniture making. The tests to evaluate the specific gravity and shrinkage of wood in the radial and axial variation of the eucalyptus trees were performed according to NBR 7190/96. The results of the analysis of wood from eucalypt species were subjected to the Homogeneity Test, ANOVA, Tukey and Pearson correlation and compared to the performance of sucupira wood (Bowdichia nitida) and cumaru wood (Dipteryx odorata), often used in the furniture industry. The following results were found: Eucalyptus grandis had a lower value of shrinkage, being more suitable for furniture components that require high dimensional stability, as well as parts of larger surface. The wood of this species showed a rate of dimensional variation compatible with the native species used in the furniture industry. The radial variation of the wood was also verified, and a high correlation between specific gravity and shrinkage was found. Longitudinally, the base of the trunk of the eucalyptus trees was shown to be the region of greatest dimensional stability.
Resumo:
OBJECTIVE: A new nerve transfer technique using a healthy fascicle of the posterior cord for suprascapular nerve reconstruction is presented. This technique was used in a patient with posttraumatic brachial plexopathy resulting in upper trunk injury with proximal root stumps that were unavailable for grafting associated with multiple nerve dysfunction. CLINICAL PRESENTATION: A 45-year-old man sustained a right brachial plexus injury after a bicycle accident. Clinical evaluation and electromyography indicated upper trunk involvement. Trapezius muscle function and triceps strength were normal on physical examination. INTERVENTION: The patient underwent a combined supra- and infraclavicular approach to the brachial plexus. A neuroma-in-continuity of the upper trunk and fibrotic C5 and C6 roots were identified. Electrical stimulation of the phrenic and spinal accessory nerves produced no response. The suprascapular nerve was dissected from the upper trunk, transected, and rerouted to the infraclavicular fossa. A healthy fascicle of the posterior cord to the triceps muscle was transferred to the suprascapular nerve. At the time of the 1-year follow-up evaluation, arm abduction against gravity and external rotation reached 40 and 34 degrees, respectively. CONCLUSION: The posterior cord can be used as a source of donor fascicle to the suprascapular nerve after its infraclavicular relocation. This new intraplexal nerve transfer could be applied in patients with isolated injury of the upper trunk and concomitant lesion of the extraplexal nerve donors usually used for reinnervation of the suprascapular nerve.