943 resultados para Grain-yield


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1(.)5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experiments in controlled environments examined the effects of the timing and severity of drought, and increased temperature, on grain development of Hereward winter wheat. Environmental effects on grain specific weight, protein content, Hagberg Falling Number, SDS-sedimentation volume, and sulphur content were also studied. Drought and increased temperature applied before the end of grain filling shortened the grain filling period and reduced grain yield, mean grain weight and specific weight. Grain filling was most severely affected by drought between days 1-14 after anthesis. Protein content was increased by stresses before the end of grain growth, because nitrogen harvest index was less severely affected than was dry matter harvest index. Hagberg Falling Number was increased to the greatest extent by stresses applied 15-28 days after anthesis. Treatment effects on grain sulphur content were similar to those on protein content, such that N:S ratio was not significantly affected by drought nor temperature stresses. The effects of restricted water on grain yield and quality were linearly related to soil moisture between 44 and about 73% field capacity (FC) from days 15-28. Drought stress (but not temperature stress) before the end of grain filling decreased SDS-sedimentation volume relative to drought applied later. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ v ‘conventional’) rotational and agronomic contexts, in each of three years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85cm and 96cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and aim Concentrations of essential minerals in plant foods may have declined in modern high-yielding cultivars grown with large applications of nitrogen fertilizer (N). We investigated the effect of dwarfing alleles and N rate on mineral concentrations in wheat. Methods Gibberellin (GA)-insensitive reduced height (Rht) alleles were compared in near isogenic wheat lines. Two field experiments comprised factorial combinations of wheat variety backgrounds, alleles at the Rht-B1 locus (rht-B1a, Rht-B1b, Rht-B1c), and different N rates. A glasshouse experiment also included Rht-D1b and Rht-B1b+D1b in one background. Results In the field, depending on season, Rht-B1b increased crop biomass, dry matter (DM) harvest index, grain yield, and the economically-optimal N rate (Nopt). Rht-B1b did not increase uptake of Cu, Fe, Mg or Zn so these minerals were diluted in grain. Nitrogen increased DM yield and mineral uptake so grain concentrations were increased (Fe in both seasons; Cu, Mg and Zn in one season). Rht-B1b reduced mineral concentrations at Nopt in the most N responsive season. In the glasshouse experiment, grain yield was reduced, and mineral concentrations increased, with Rht allele addition. Conclusion Effects of Rht alleles on Fe, Zn, Cu and Mg concentrations in wheat grain are mostly due to their effects on DM, rather than of GA-insensitivity on Nopt or mineral uptake. Increased N requirement in semi-dwarf varieties partly offsets this dilution effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fossil fuel combustion and deforestation have resulted in a rapid increase in atmospheric [CO2] since the 1950’s, and it will reach about 550 μmol mol−1 in 2050. Field experiments were conducted at the Free-air CO2 Enrichment facility in Beijing, China. Winter wheat was grown to maturity under elevated [CO2] (550 ± 17 μmol mol−1) and ambient [CO2] (415 ± 16 μmol mol−1), with high nitrogen (N) supply (HN, 170 kg N ha−1) and low nitrogen supply (LN, 100 kg N ha−1) for three growing seasons from 2007 to 2010. Elevated [CO2] increased wheat grain yield by 11.4% across the three years. [CO2]-induced yield enhancements were 10.8% and 11.9% under low N and high N supply, respectively. Nitrogen accumulation under elevated [CO2] was increased by 12.9% and 9.2% at the half-way anthesis and ripening stage across three years, respectively. Winter wheat had higher nitrogen demand under elevated [CO2] than ambient [CO2], and grain yield had a stronger correlation with plant N uptake after anthesis than before anthesis at high [CO2]. Our results suggest that regulating on the N application rate and time, is likely important for sustainable grain production under future CO2 climate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In upland rice, the reduced grain yield that originates from the moisture stress period is related to the plant's tolerance of water deficiency and may vary between cultivars. The purpose of the work presented here was to evaluate the performance of upland rice cultivars in both rainfed and sprinkler-irrigated systems. A split-plot scheme with 8 replicates in a randomised block design was used. The plots were composed of 2 cropping systems (rainfed and sprinkler-irrigated) and the split-plot consisted of 2 cultivars (IAC 201 and Carajas) which are suggested for cultivation in upland ecosystems. Carajas had a greater number of panicles per square metre, higher spikelet fertility and grain mass, and, consequently, a higher grain yield than IAC 201 regardless of cropping system. IAC 201 was more sensitive to water deficiency than Carajas. Sprinkler irrigation improved spikelet fertility, grain mass and upland rice grain yield. Even when cultivars with a higher tolerance of water deficiency are used, a sprinkler-irrigated system may be a viable method to increase upland rice yield throughout most of the Brazilian Cerrado.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brazil has extensive area with acid soils. Using phosphogypsum and soil acidity tolerant cultivars are alternatives to crop establishment in no-till system without previous limestone incorporation in many agricultural soils of Brazil. However, it remains unknown how phosphogypsum and limestone surface application affects rice (Oryza sativa L.) and common bean (Phaseolus vulgaris L.) nutrition and yield under a no-till system. A field experiment was conducted in a sandy clay loam, kaolinitic, thermic Typic Haplorthox, previously cultivated under conventional tillage, in Botucatu, Sao, Paulo State, Brazil. Treatments included four dolomitic limestone rates (0, 1100, 2700, and 4300 kg ha(-1)), two phosphogypsum rates (0 and 2100 kg ha(-1)), and two upland rice cultivars (Caiapo and IAC 202). in 2002-2003, and two bean cultivars (Perola and Carioca), in 2003-2004. Both amendments were applied on the surface, without soil incorporation. The content of Ca, Mg, and Mn in flag leaves and rice yield increased with limestone surface application. Liming increased the shoot dry matter of IAC 202 rice. Phosphogypsum increased S contents in leaves of both rice cultivars, and resulted in higher grain yield in the Caiapo rice. Liming increased K contents in leaves of both bean cultivars. In the absence of phosphogypsum, liming increased S contents and grain yield of bean. Content of Mg in leaves was reduced by phosphogypsum in lower limestone rates. In phosphogypsum presence, liming reduced Zn contents in leaves and increased bean shoot dry matter. Phosphogypsum increased Ca and S, and reduced Mg contents in bean leaves. Using soil acidity tolerant cultivars promoted higher crop yields in no-till systems establishment, even when the effective soil amelioration had not yet been achieved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As pastagens cultivadas do Cerrado brasileiro são responsáveis pela metade da produtividade da carne bovina destinada à alimentação da população, enquanto as culturas agrícolas o são pela terça parte de sua produtividade de grãos, desempenhando importante papel econômico-financeiro para o país. Dessa forma, no ano agrícola 2005/2006, na Fazenda de Ensino e Pesquisa da Faculdade de Engenharia de Ilha Solteira - FEIS/UNESP, foram estudadas a variabilidade e a dependência espacial entre atributos físicos do solo e a produtividade da soja, quando rotacionados após a pastagem degradada com Brachiaria, sobre um Latossolo Vermelho distroférrico. Também foram estudadas correlações lineares e espaciais entre esses atributos, apurando condições que proporcionassem aumento da produtividade agrícola. Para isso, na área com a referida pastagem instalou-se uma malha contendo 124 pontos amostrais, com espaçamentos de 10,0 x 10,0 e de 5,0 x 5,0 m entre eles, numa área total de 7.500 m². Dos pontos de vista linear e espacial, a elevada produtividade de grãos de soja pode ser explicada em razão do número de grãos por planta e da macroporosidade do solo. A alta variabilidade obtida na maioria dos atributos do solo denotou que a integração lavoura-pecuária é um sistema que proporciona heterogeneidade do ambiente físico do solo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Farmers are interested in producing popcorn under organic production systems and propane flaming could be a significant component of an integrated weed management program. The objective of this study was to collect baseline information on popcorn tolerance to broadcast flaming as influenced by propane dose and crop growth stage at the time of flaming. Field experiments were conducted at the Haskell Agricultural Laboratory of the University of Nebraska, Concord, NE in 2008 and 2009 using five propane doses (0, 13, 24, 44 and 85 kg ha(-1)) applied at the 2-leaf, 5-leaf and 7-leaf growth stages. Propane was applied using a custom-built research flamer driven at a constant speed of 6.4 km h(-1). Crop response to propane dose was described by log-logistic models on the basis of visual estimates of crop injury, yield components (plants m(-2), ears plant(-1), kernels cob(-1) and 100-kernel weight) and grain yield. Popcorn response to flaming was influenced by the crop growth stage and propane dose. Based on various parameters evaluated, popcorn flamed at the 5-leaf showed the highest tolerance while the 2-leaf was the most susceptible stage. The maximum yield reductions were 45%, 9% and 16% for the 2-leaf, 5-leaf and 7-leaf stages, respectively. In addition, propane doses that resulted in a 5% yield loss were 23 kg ha(-1) for the 2-leaf and 7-leaf and 30 kg ha(-1) for the 5-leaf stage. Flaming has a potential to be used effectively in organic popcorn production if properly used. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Upland rice (Oryza sativa L.) cultivation has been increasing in global importance due to the decreasing water availability for flood- irrigated rice. The use of sprinkler irrigation to supplement rainfall and the identification of cultivars more adapted to lower water availability could be effective alternatives for producing upland rice without yield losses while using less water. The objective of this field study was to evaluate the root distribution, plant nutrition, and grain yield of two drought tolerant upland rice cultivars under two water regimes in the Cerrado Region of Brazil during two growing seasons. The main plots were two water regimes (rainfed and sprinkler-irrigation plus rainfall). Subplots were two upland rice cultivars Carajás and IAC 201. Low water availability reduced root growth by 7% and grain yields were from 2644 to 4002 kg ha-1 on average for rainfed and sprinkler irrigation treatments, respectively. Carajás had a significantly better root distribution, nutrient uptake, and higher grain yield (3732 kg ha-1) compared with IAC 201 (2914 kg ha-1) averaged over two growing seasons and water regimes. There were no treatment interactions. Our results suggest that, even when cultivars with a higher tolerance to less water availability are used, using sprinkler irrigation to augment limited rainfall during dry periods may be a viable method to increase upland rice grain yields. © 2013 by the American Society of Agronomy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to evaluate the efficiency of superficial applicationof limestone and slag, and their effects on soil chemical attributes and on yield and mineral nutrition of soybean, maize, and Congo signal grass (Urochloa ruziziensis). The experiment was carried out in a Rhodic Hapludox under no tillage system. The treatments consisted of the use of limestone or slag (silicates of calcium and magnesium) to correct soilacidity, and of a control treatment without the use of soil correctives. Rates were calculated in order to raise soil base saturation up to 70%. Soybean was sown in November 2006and maize in December 2007. Congo signal grass was sown right after the harvests of soybean and maize, and it was cropped during the offseasons. Soil chemical attributes were evaluated at 6, 12, and 18 months after the application of the corrective materials. Slag isan efficient source for soil acidity correction, being able to raise the exchangeable base levels in the soil profile faster than lime. Both limestone and slag increase dry matter yield of Congo signal grass, and grain yield of soybean and maize. Slag is more effective in improving maize grain yield.