949 resultados para Grain size and shape
Resumo:
Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.
Resumo:
The book is devoted to results of studies of Pacific sediment composition, regularities of their distribution and processes of sedimentation in the Pacific Ocean. Materials obtained by Soviet expeditions are the main part of the book.
Resumo:
Hypotheses of origin of ocean deep red clays are under discussion. On an example of the Pacific Ocean grain size, mineralogy and chemical composition of clays are considered. It is shown that they formed from atmospheric dust and andesite pyroclastics. Accumulation of the clays occurred through deposition particle-by-particle and by pellet transport.
Resumo:
Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.
Resumo:
Die Sandergebiete sind von 5 Zentren her geschüttet, den Gletschertoren bei Flensburg, Frörup/Översee, Idstedt/Lürschau, Schleswig, Owschlag. Die Körnung der Schmelzwassersande nimmt mit zunehmender Entfernung von den Gletschertoren zunächst schnell, von Medianwerten über 1 mm auf Medianwerte um 0,4 mm in 10 km, dann langsam bis auf Medianwerte unter 0,2 mm in 30 km Entfernung ab. Sortierung und Symmetrie der Sande steigen entsprechend. Aus den Kornverteilungen lassen sich die Fließgeschwindigkeiten bei der Ablagerung ablesen. Sie sind geringer gewesen, als es die mächtigen und verbreiteten Akkumulationen erscheinen lassen. Bereits in 6 km Entfernung vom Eisrand flossen die Schmelzwässer als träge Bäche (0,3 m/sec) ab. In den Gletschertoren traten stoßweise extreme Fließgeschwindigkeiten auf, waren aber nur in geringem Maße am Gesamtaufbau der Sander beteiligt. Die Verbreitung der Würmsande paßt sich den Formen einer älteren Landschaft an. Sie läßt sich im behandelten Gebiet mit Hilfe der Schwermineralanalyse deutlich gegenüber den rißzeitlichen Ablagerungen abgrenzen, da die Verteilungen in den verschiedenaltrigen Sedimenten unterschiedlich sind. Vor Allem das Hornblende/Epidotverhältnis (Hornblendezahl nach STEINERT) ist ein gutes Kriterium. Da rißzeitliche Ablagerungen von den Schmelzwässern aufgearbeitet wurden, und zudem die Hornblenden im Laufe des Transportes stark abrollen, verwischen sich die Unterschiede in weiter Entfernung vom Eisrand. Schmelzwassersande der Würmvereisung sind vor Allem im Norden des Arbeitsgebietes weit nach Westen, bis an die nordfriesischen Inseln, geschüttet worden. Die Schmelzwässer benutzten als Durchlässe zu den Senken des Eemmeeres an der Westküste Täler in rißzeitlichen Hochgebieten. Die Wassermengen wurden hier gebündelt, sodaß sich auf den Eemablagerungen im Anschluß an die Durchlässe "Sekundärsander" ausbreiteten. Die Mächtigkeit der anstehenden Würm-Sandergebiete beträgt bis zu 20 m, meistens zwischen 10 und 15 m. An der Westküste sind die Schmelzwasserablagerungen von marinem Alluvium überdeckt. Teile der morphographisch als junge Sanderebenen erscheinenden Gebiete bestehen in Wirklichkeit aus rißzeitlichen, von jungen Schmelzwässern allenfalls oberflächlich umgearbeiteten Ablagerungen der älteren Vereisung. So ist der westliche und südwestliche Teil des Schleisanders schon während der Rißvereisung aufgeschüttet.
Resumo:
Decadal to sub-decadal variability of inflow, evaporation and biological productivity derived from Lake Nam Co was used to reconstruct hydrological changes for the past ca. 24 k cal a BP. The timing of these variations corresponds to known climatic shifts on the Northern Hemisphere. After a dry and cold Last Glacial Maximum the lake level of Nam Co initially rose at ca. 20 k cal a BP. Moist but further cold conditions between ca. 16.2 and 14 k cal a BP correspond to Heinrich Event 1. A warm and moist phase between ca. 14 and 13 k cal a BP is expressed as a massive enhancement in inflow and biological productivity and might be associated with a first intensification of the Indian Ocean Summer Monsoon coinciding with the Bølling-Allerød complex. A twostep decrease in inflow and a contemporaneous decline in biological productivity until ca. 11.8 k cal a BP points to cool and dry conditions during the Younger Dryas. Lake levels peak at ca. 9.4 k cal a BP, although hydrological conditions remain relatively stable during the Holocene with only low-amplitude variations observed.
Resumo:
The particle size, shape and distribution of a range of rotational moulding polyethylenes (PEs) ground to powder was investigated using a novel visual data acquisition and analysis system (TP Picture®), developed by Total Petrochemicals. Differences in the individual particle shape factors of the powder samples were observed and correlations with the grinding conditions were determined. When heated, the bubble dissolution behaviour of the same powders was investigated and the shape factor correlated with densification rate, bubble size and bubble distribution.
Resumo:
In this paper we construct a model for the simultaneous compaction by which clusters are restructured, and growth of clusters by pairwise coagulation. The model has the form of a multicomponent aggregation problem in which the components are cluster mass and cluster diameter. Following suitable approximations, exact explicit solutions are derived which may be useful for the verification of simulations of such systems. Numerical simulations are presented to illustrate typical behaviour and to show the accuracy of approximations made in deriving the model. The solutions are then simplified using asymptotic techniques to show the relevant timescales of the kinetic processes and elucidate the shape of the cluster distribution functions at large times.
Resumo:
Properties of cast aluminium matrix composites are greatly influenced by the nature of distribution of reinforcing phase in the matrix and matrix microstructural length scales, such as grain size, dendrite arm spacing, size and morphology of secondary matrix phases, etc. Earlier workers have shown that SIC reinforcements can act as heterogeneous nucleation sites for Si during solidification of Al-Si-SiC composites. The present study aims at a quantitative understanding of the effect of SiC reinforcements on secondary matrix phases, namely eutectic Si, during solidification of A356 Al-SiC composites. Effect of volume fraction of SiC particulate on size and shape of eutectic Si has been studied at different cooling rates. Results indicate that an increase in SiC volume fraction leads to a reduction in the size of eutectic Si and also changes its morphology from needle-like to equiaxed. This is attributed to the heterogeneous nucleation of eutectic Si on SiC particles. However, SiC particles are found to have negligible influence on DAS. Under all the solidification conditions studied in the present investigation, SiC particles are found to be rejected by the growing dendrites. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The structural property of InN films grown on Ga-face GaN layers by metal-organic chemical vapor deposition has been studied by high-resolution x-ray diffraction. The mosaic tilt and twist are found to be strongly dependent on the surface lateral grain size. The twist decreases with increasing grain size and finally approaches to a constant level. On the other hand, the mosaic tilt increases substantially when the grain size becomes large enough and exceeds the width of step terraces on the GaN surface, showing an important mechanism for the defect generation in the InN/GaN system with large out-of-plane lattice mismatch. (c) 2006 American Institute of Physics.
Resumo:
Although it is well known that sandstone porosity and permeability are controlled by a range of parameters such as grain size and sorting, amount, type, and location of diagenetic cements, extent and type of compaction, and the generation of intergranular and intragranular secondary porosity, it is less constrained how these controlling parameters link up in rock volumes (within and between beds) and how they spatially interact to determine porosity and permeability. To address these unknowns, this study examined Triassic fluvial sandstone outcrops from the UK using field logging, probe permeametry of 200 points, and sampling at 100 points on a gridded rock surface. These field observations were supplemented by laser particle-size analysis, thin-section point-count analysis of primary and diagenetic mineralogy, quantitiative XRD mineral analysis, and SEM/EDAX analysis of all 100 samples. These data were analyzed using global regression, variography, kriging, conditional simulation, and geographically weighted regression to examine the spatial relationships between porosity and permeability and their potential controls. The results of bivariate analysis (global regression) of the entire outcrop dataset indicate only a weak correlation between both permeability porosity and their diagenetic and depositional controls and provide very limited information on the role of primary textural structures such as grain size and sorting. Subdividing the dataset further by bedding unit revealed details of more local controls on porosity and permeability. An alternative geostatistical approach combined with a local modelling technique (geographically weighted regression; GWR) subsequently was used to examine the spatial variability of porosity and permeability and their controls. The use of GWR does not require prior knowledge of divisions between bedding units, but the results from GWR broadly concur with results of regression analysis by bedding unit and provide much greater clarity of how porosity and permeability and their controls vary laterally and vertically. The close relationship between depositional lithofacies in each bed, diagenesis, and permeability, porosity demonstrates that each influences the other, and in turn how understanding of reservoir properties is enhanced by integration of paleoenvironmental reconstruction, stratigraphy, mineralogy, and geostatistics.
Resumo:
Ilha Comprida is a regressive barrier island located in southeastern Brazil that was formed essentially by Quaternary sandy sediments. Ilha Comprida sediments were analyzed to assess heavy mineral indices and grain size variables. The spatial variation of heavy minerals and grain size was interpreted in terms of the present barrier dynamics and the barrier`s evolution since the Middle Holocene. These analyses allowed for the identification of the main factors and processes that control the variation of heavy minerals and grain size on the barrier. Rutile and zircon (RZi) and tourmaline and hornblende (THi) are significantly sensitive to provenance and exhibit the contributions of the Ribeira de Iguape River sediments, which reach the coast next to the northeastern end of Ilha Comprida. In addition to the influence of provenance, TZi responds mainly to hydraulic sorting processes. This agrees with a sediment transport pattern characterized by a divergence of two resultant net alongshore drifts southwest of the barrier. The sediments from the Ribeira de Iguape River reach the barrier directly through the river mouth and indirectly after temporary storage in the inner shelf. The combination of grain size and heavy mineral analyses is a reliable method for determining sediment transport patterns and provenance. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Sand-silt-clay distribution was determined at Scripps on samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954); sand, silt, and clay boundaries are determined on the basis of the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters range from 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied regardless of sediment type and origin.
Resumo:
Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described.