962 resultados para Gomphrena elegans
Resumo:
While the standard models of concentration addition and independent action predict overall toxicity of multicomponent mixtures reasonably, interactions may limit the predictive capability when a few compounds dominate a mixture. This study was conducted to test if statistically significant systematic deviations from concentration addition (i.e. synergism/antagonism, dose ratio- or dose level-dependency) occur when two taxonomically unrelated species, the earthworm Eisenia fetida and the nematode Caenorhabditis elegans were exposed to a full range of mixtures of the similar acting neonicotinoid pesticides imidacloprid and thiacloprid. The effect of the mixtures on C. elegans was described significantly better (p<0.01) by a dose level-dependent deviation from the concentration addition model than by the reference model alone, while the reference model description of the effects on E. fetida could not be significantly improved. These results highlight that deviations from concentration addition are possible even with similar acting compounds, but that the nature of such deviations are species dependent. For improving ecological risk assessment of simple mixtures, this implies that the concentration addition model may need to be used in a probabilistic context, rather than in its traditional deterministic manner. Crown Copyright (C) 2008 Published by Elsevier Inc. All rights reserved.
Resumo:
Ecological risk assessments must increasingly consider the effects of chemical mixtures on the environment as anthropogenic pollution continues to grow in complexity. Yet testing every possible mixture combination is impractical and unfeasible; thus, there is an urgent need for models that can accurately predict mixture toxicity from single-compound data. Currently, two models are frequently used to predict mixture toxicity from single-compound data: Concentration addition and independent action (IA). The accuracy of the predictions generated by these models is currently debated and needs to be resolved before their use in risk assessments can be fully justified. The present study addresses this issue by determining whether the IA model adequately described the toxicity of binary mixtures of five pesticides and other environmental contaminants (cadmium, chlorpyrifos, diuron, nickel, and prochloraz) each with dissimilar modes of action on the reproduction of the nematode Caenorhabditis elegans. In three out of 10 cases, the IA model failed to describe mixture toxicity adequately with significant or antagonism being observed. In a further three cases, there was an indication of synergy, antagonism, and effect-level-dependent deviations, respectively, but these were not statistically significant. The extent of the significant deviations that were found varied, but all were such that the predicted percentage effect seen on reproductive output would have been wrong by 18 to 35% (i.e., the effect concentration expected to cause a 50% effect led to an 85% effect). The presence of such a high number and variety of deviations has important implications for the use of existing mixture toxicity models for risk assessments, especially where all or part of the deviation is synergistic.
Resumo:
The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively. Both isoforms had equal zinc binding ability, but differed in their cadmium binding behaviour, with higher affinity found for CeMT-2. In addition, wild-type C. elegans, single MT knockouts and a double MT knockout allele were exposed to zinc (340 μm) or cadmium (25 μm) to investigate effects in vivo. Zinc levels were significantly increased in all knockout strains, but were most pronounced in the CeMT-1 knockout, mtl-1 (tm1770), while cadmium accumulation was highest in the CeMT-2 knockout, mtl-2 (gk125) and the double knockout mtl-1;mtl-2 (zs1). In addition, metal speciation was assessed by X-ray absorption fine-structure spectroscopy. This showed that O-donating, probably phosphate-rich, ligands play a dominant role in maintaining the physiological concentration of zinc, independently of metallothionein status. In contrast, cadmium was shown to coordinate with thiol groups, and the cadmium speciation of the wild-type and the CeMT-2 knockout strain was distinctly different to the CeMT-1 and double knockouts. Taken together, and supported by a simple model calculation, these findings show for the first time that the two MT isoforms have differential affinities towards Cd(II) and Zn(II) at a cellular level, and this is reflected at the protein level. This suggests that the two MT isoforms have distinct in vivo roles.
Resumo:
Aims: To study the biotechnological production of lipids containing rich amounts of the medically and nutritionally important c-linolenic acid (GLA), during cultivation of the Zygomycetes Thamnidium elegans, on mixtures of glucose and xylose, abundant sugars of lignocellulosic biomass. Methods and Results: Glucose and xylose were utilized as carbon sources, solely or in mixtures, under nitrogen-limited conditions, in batch-flask or bioreactor cultures. On glucose, T. elegans produced 31.9 g/L of biomass containing 15.0 g/L lipid with significantly high GLA content (1014 mg/L). Xylose was proved to be an adequate substrate for growth and lipid production. Additionally, xylitol secretion occurred when xylose was utilized as carbon source, solely or in mixtures with glucose. Batch-bioreactor trials on glucose yielded satisfactory lipid production, with rapid substrate consumption rates. Analysis of intracellular lipids showed that the highest GLA content was observed in early stationary growth phase, while the phospholipid fraction was the most unsaturated fraction of T. elegans. Conclusions: Thamnidium elegans represents a promising fungus for the successful valorization of sugar-based lignocellulosic residues into microbial lipids of high nutritional and pharmaceutical interest.
Resumo:
The introduction of the snail Trochoidea elegans to one of its three known sites in Britain has been investigated. 210Pb dating suggests that it has been present at Chaldon, Surrey, at least since the first decade of the twentieth century; it may have been deliberately translocated to this site by the Rev. Canon J. W. Horsley.
Resumo:
Studies on the pollination biology of Eriocaulaceae are scarce although particularly interesting because of its inclusion in the Poales, a predominantly wind-pollinated order. The pollination biology of Syngonanthus elegans (Bong.) Ruhland was studied during two annual flowering periods to test the hypothesis that insect pollination was its primary pollination system. A field study was carried out, including observations of the morphology and biology of the flowers, insect visits and pollinator behaviour. We also evaluated seed set, seed germination and seedling development for different pollination modes. Although seeds were produced by self-pollination, pollination by small insects contributed most effectively to the reproductive success of S. elegans, resulting in the greatest seed set, with the highest germination percentage and optimum seedling vigour. The. oral resources used by flower visitors were pollen and nectar that was produced by staminate and pistillate flowers. Self-pollination played a minor role and its consequence was inbreeding depression.
Ocorrência de podridão negra, causada por Chalara elegans, em raízes de cenoura no Rio Grande do Sul
Resumo:
Ocurrence of black root, caused of Chalara elegans, in carrot rot in the State of Rio Grande do Sul A black root rot in carrot (Daucus carotae), caused by Chalara elegans, is reported for the first time in the State of Rio Grande do Sul, Brazi