978 resultados para Ginzburg-Landau theory
Resumo:
Structural defects in ion crystals can be formed during a linear quench of the transverse trapping frequency across the mechanical instability from a linear chain to a zigzag structure. The density of defects after the sweep can be conveniently described by the Kibble-Zurek mechanism (KZM). In particular, the number of kinks in the zigzag ordering can be derived from a time-dependent Ginzburg-Landau equation for the order parameter, here the zigzag transverse size, under the assumption that the ions are continuously laser cooled. In a linear Paul trap, the transition becomes inhomogeneous, since the charge density is larger in the center and more rarefied at the edges. During the linear quench, the mechanical instability is first crossed in the center of the chain, and a front, at which the mechanical instability is crossed during the quench, is identified that propagates along the chain from the center to the edges. If the velocity of this front is smaller than the sound velocity, the dynamics become adiabatic even in the thermodynamic limit and no defect is produced. Otherwise, the nucleation of kinks is reduced with respect to the case in which the charges are homogeneously distributed, leading to a new scaling of the density of kinks with the quenching rate. The analytical predictions are verified numerically by integrating the Langevin equations of motion of the ions, in the presence of a time-dependent transverse confinement. We argue that the non-equilibrium dynamics of an ion chain in a Paul trap constitutes an ideal scenario to test the inhomogeneous extension of the KZM, which lacks experimental evidence to date.
Resumo:
The nonequilibrium dynamics of an ion chain in a highly anisotropic trap is studied when the transverse trap frequency is quenched across the value at which the chain undergoes a continuous phase transition from a linear to a zigzag structure. Within Landau theory, an equation for the order parameter, corresponding to the transverse size of the zigzag structure, is determined when the vibrational motion is damped via laser cooling. The number of structural defects produced during a linear quench of the transverse trapping frequency is predicted and verified numerically. It is shown to obey the scaling predicted by the Kibble-Zurek mechanism, when extended to take into account the spatial inhomogeneities of the ion chain in a linear Paul trap.
Resumo:
A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.
Resumo:
In this work, the general framework in which fits our investigation is that of modeling the dynamics of dust grains therein dusty plasma (complex plasma) in the presence of electromagnetic fields. The generalized discrete complex Ginzburg-Landau equation (DCGLE) is thus obtained to model discrete dynamical structure in dusty plasma with Epstein friction. In the collisionless limit, the equation reduces to the modified discrete nonlinear Schrödinger equation (MDNLSE). The modulational instability phenomenon is studied and we present the criterion of instability in both cases and it is shown that high values of damping extend the instability region. Equations thus obtained highlight the presence of soliton-like excitation in dusty plasma. We studied the generation of soliton in a dusty plasma taking in account the effects of interaction between dust grains and theirs neighbours. Numerical simulations are carried out to show the validity of analytical approach.
Resumo:
The macroscopic properties of the superconducting phase in the multiphase compound YPd5B3 C.3 have been investigated. The onset of superconductivity was observed at 22.6 K, zero resistance at 21.2 K, the lower critical field Hel at 5 K was determined to be Hel (5) rv 310 Gauss and the compound was found to be an extreme type-II superconductor with the upper critical field in excess of 55000 Gauss at 15 K. From the upper and lower critical field values obtained, several important parameters of the superconducting state were determined at T = 15 K. The Ginzburg-Landau paramater was determined to be ~ > 9 corresponding to a coherence length ~ rv 80A and magnetic penetration depth of 800A. In addition measurements of the superconducting transition temperature Te(P) under purely hydrostatically applied pressure have been carried out. Te(P) of YPd5B3 C.3 decreases linearly with dTe/dP rv -8.814 X 10-5 J
Resumo:
Using a Ginzburg-Landau model for the magnetic degrees of freedom with coupling to disorder, we demonstrate through simulations the existence of stripelike magnetic precursors recently observed in Co-Ni-Al alloys above the Curie temperature. We characterize these magnetic modulations by means of the temperature dependence of local magnetization distribution, magnetized volume fraction, and magnetic susceptibility. We also obtain a temperature-disorder strength phase diagram in which a magnetic tweed phase exists in a small region between the paramagnetic and dipolar phases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The study of superconducting samples in mesoscopic scale presented a remarkable improvement during the last years. Certainly, such interest is based on the fact that when the size of the samples is close to the order of the temperature dependent coherence length xi(T), and/or the size of the penetration depth lambda(T), there are some significant modifications on the physical properties of the superconducting state. This contribution tests the square cross-section size limit for the occurrence (or not) of vortices in mesoscopic samples of area L-2, where L varies discretely from 1 xi(0) to 8 xi(0).The time dependent Ginzburg-Landau (TDGL) equations approach is used upon taking the order parameter and the local magnetic field invariant along the z-direction. The vortex configurations at the equilibrium can be obtained from the TDGL equations for superconductivity as the system relaxes to the stationary state.The obtained results show that the limit of vortex penetration is for the square sample of size 3 xi(0) x 3 xi(0) in which only a single vortex are allowed into the sample. For smaller specimens, no vortex can be formed and the field entrance into the sample is continuous and the total flux penetration occurs at higher values of H/H-c2(0), where H-c2(T) is the upper critical field. Otherwise, for larger samples different vortices patterns can be observed depending on the sample size. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present paper we develop an algorithm to solve the time dependent Ginzburg-Landau equations, by using the link variables technique, for circular geometries. In addition, we evaluate the Helmholtz and Gibbs free energy, the magnetization, and the number of vortices. This algorithm is applied to a circular sector. We evaluate the superconduting-normal magnetic field transition, the magnetization, and the superconducting density. Our results point out that, as we reduce the superconducting area, the nucleation field increases. Nevertheless, as the angular width of the circular sector goes to small values the asymptotic behavior is independent of the sample area. We also show that the value of the first nucleation field is approximately the same independently of the form of the circular sector. Furthermore, we study the nucleation of giant and multivortex states for the different shapes of the present geometry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider the Euclidean D-dimensional -lambda vertical bar phi vertical bar(4)+eta vertical bar rho vertical bar(6) (lambda,eta > 0) model with d (d <= D) compactified dimensions. Introducing temperature by means of the Ginzburg-Landau prescription in the mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the coordinates axis x(1), x(2),..., x(d). The planes in each pair are separated by distances L-1, L-2, ... , L-d. We obtain an expression for the transition temperature as a function of the size of the system, T-c({L-i}), i = 1, 2, ..., d. For D = 3 we particularize this formula, taking L-1 = L-2 = ... = L-d = L for the physically interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3 (a cube). For completeness, the corresponding formulas for second-order transitions are also presented. Comparison with experimental data for superconducting films and wires shows qualitative agreement with our theoretical expressions.
Resumo:
We consider the dynamics of a system of interacting spins described by the Ginzburg-Landau Hamiltonian. The method used is Zwanzig's version of the projection-operator method, in contrast to previous derivations in which we used Mori's version of this method. It is proved that both methods produce the same answer for the Green's function. We also make contact between the projection-operator method and critical dynamics.