969 resultados para Ginzburg-Landau formalism
Resumo:
In general, the studies of finite size effects in mesoscopic superconductors have been carried out in such a way that the temperature parameter is constant in the entire system. However, we could have situations where a real sample is near a heater source, as an example. In such situations, gradients of temperature are present. On the other hand, mesoscopic superconductors are interesting systems due to the fact that they present confinement effects which influence all the vortex dynamics. Thus, in this work we studied the influence of thermal gradients on the vortex dynamics in mesoscopic superconductors. For this purposes, we used the time dependent Ginzburg-Landau equations. The thermal gradients produce an asymmetric distribution of the currents around the system which, in turn, yield interesting vortex configurations and difficult the formation of giant vortices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.
Resumo:
Gegenstand dieser Arbeit ist die Untersuchung der strukturellen und magnetischen Eigenschaften von (111)-texturierten epitaktischen dünnen Co/Pt-Vielfachschichten und Pt/Co/Pt-Heterostrukturen. Mit Hilfe von Röntgen-Diffraktions-Experimenten wurde der Einfluß der Oberflächenqualität des MgO (111) Substratmaterials auf die Zwischenlagenstruktur und die kristalline Ordnung in den Filmen analysiert. Es konnte nachgewiesen werden, daß die Unordnung an der Co/Pt-Grenzfläche unterhalb einer Längenskala von 6 nm allein durch die Wachstums- und Interdiffusionsprozesse zwischen der Co- und der Pt-Lage bestimmt ist, unabhängig von der Qualität der Substratoberfläche. Demgegenüber zeigte sich, daß durch eine besondere Substratbehandlung eine langreichweitige kristalline Kohärenz der Schichten und eine Unterdrückung der Verzwillingung aus abc- und acb-Wachstumsdomänen des fcc-Platin erzielt werden können. Anhand integraler Messungen des magneto-optischen Kerr-Effektes wurde ein direkter Zusammenhang zwischen der Substrat-induzierten Defektdichte der Filme und der Nukleation magnetischer Domänen während der Ummagnetisierung nachgewiesen. Pt/Co/Pt-Dreifachlagen mit Kobalt-Dicken bis zu 1 nm besitzen eine senkrechte magnetische Anisotropie und zeigen magnetische Domänen mit Größen von bis zu einigen hundert Mikrometern, die mit Hilfe optischer Kerr-Mikroskopie visualisiert wurden. In Pt/Co/Pt-Dreifachschichten mit weniger als drei Monolagen Kobalt, welche auf vicinalen MgO (111)-Substraten aufgebracht wurden, treten während der Ummagnetisierung aufgrund anisotroper Domänenwandbewegung charakteristische dreieckige Domänenformen auf. Es wurde ein mikroskopischer Mechanismus vorgeschlagen, welcher dieses anisotrope Pinning von magnetischen Domänenwänden an mesoskopischen Stufen-Strukturen der Substratoberfläche beschreibt. Zur quantitativen Beschreibung der anisotropen Domänenwandbewegung wurden zweidimensionale numerische Simulationen durchgeführt, basierend auf einem modifizierten Random-Field-Ising-Modell mit einem Ginzburg-Landau-artigen Hamiltonian, in dem der Einfluß der Stufenkanten auf den Ordnungsparamter durch ein neu eingeführtes effektives anisotropes Feld G(r) repräsentiert ist. Unter Annahme einer lateralen Anordnung der Stufenkanten in Form eines Fischgrätenmusters konnten im Rahmen dieses Modells die experimentell beobachteten charakteristischen anisotropen Domänenformen sowie die Skaleneigenschaften der Domänenwände in exzellenter Weise numerisch reproduziert werden.
Resumo:
This work addresses the electronical properties of the superconductors UPd2Al3 and UNi2Al3 on the basis of thin film experiments. These isotructural compounds are ideal candiates to study the interplay of magnetism and superconductivity due to the differences of their magnetically ordered states, as well as the experimental evidence for a magnetic pairing mechanism in UPd2Al3. Epitaxial thin film samples of UPd2Al3 and UNi2Al3 were prepared using UHV Molecular Beam Epitaxy (MBE). For UPd2Al3, the change of the growth direction from the intrinsic (001) to epitaxial (100) was predicted and sucessfully demonstrated using LaAlO3 substrates cut in (110) direction. With optimized deposition process parameters for UPd2Al3 (100) on LaAlO3 (110) superconducting samples with critical temperatures up to Tc = 1.75K were obtained. UPd2Al3-AlOx-Ag mesa junctions with superconducting base electrode were prepared and shown to be in the tunneling regime. However, no signatures of a superconducting density of states were observed in the tunneling spectra. The resistive superconducting transition was probed for a possible dependence on the current direction. In contrast to UNi2Al3, the existence of such feature was excluded in UPd2Al3 (100) thin films. The second focus of this work is the dependence of the resisitive transition in UNi2Al3 (100) thin films on the current direction. The experimental fact that the resisitive transition occurs at slightly higher temperatures for I║a than for I║c can be explained within a model of two weakly coupled superconducting bands. Evidence is presented for the key assumption of the two-band model, namely that transport in and out of the ab-plane is generated on different, weakly coupled parts of the Fermi surface. Main indications are the angle dependence of the superconducting transition and the dependence of the upper critical field Bc2 on current and field orientation. Additionally, several possible alternative explanations for the directional splitting of the transition are excluded in this work. An origin due to scattering on crystal defects or impurities is ruled out, likewise a relation to ohmic heating or vortex dynamics. The shift of the transition temperature as function of the current density was found to behave as predicted by the Ginzburg-Landau theory for critical current depairing, which plays a significant role in the two-band model. In conclusion, the directional splitting of the resisitive transition has to be regarded an intrinsic and unique property of UNi2Al3 up to now. Therefore, UNi2Al3 is proposed as a role model for weakly coupled multiband superconductivity. Magnetoresistance in the normalconducting state was measured for UPd2Al3 and UNi2Al3. For UNi2Al3, a negative contribution was observed close to the antiferromagnetic ordering temperature TN only for I║a, which can be associated to reduced spin-disorder scattering. In agreement with previous results it is concluded that the magnetic moments have to be attributed to the same part of the Fermi surface which generates transport in the ab-plane.
Resumo:
In this work we propose a method to accelerate time dependent numerical solvers of systems of PDEs that require a high cost in computational time and memory. The method is based on the combined use of such numerical solver with a proper orthogonal decomposition, from which we identify modes, a Galerkin projection (that provides a reduced system of equations) and the integration of the reduced system, studying the evolution of the modal amplitudes. We integrate the reduced model until our a priori error estimator indicates that our approximation in not accurate. At this point we use again our original numerical code in a short time interval to adapt the POD manifold and continue then with the integration of the reduced model. Application will be made to two model problems: the Ginzburg-Landau equation in transient chaos conditions and the two-dimensional pulsating cavity problem, which describes the motion of liquid in a box whose upper wall is moving back and forth in a quasi-periodic fashion. Finally, we will discuss a way of improving the performance of the method using experimental data or information from numerical simulations
Resumo:
A local proper orthogonal decomposition (POD) plus Galerkin projection method was recently developed to accelerate time dependent numerical solvers of PDEs. This method is based on the combined use of a numerical code (NC) and a Galerkin sys- tem (GS) in a sequence of interspersed time intervals, INC and IGS, respectively. POD is performed on some sets of snapshots calculated by the numerical solver in the INC inter- vals. The governing equations are Galerkin projected onto the most energetic POD modes and the resulting GS is time integrated in the next IGS interval. The major computa- tional e®ort is associated with the snapshots calculation in the ¯rst INC interval, where the POD manifold needs to be completely constructed (it is only updated in subsequent INC intervals, which can thus be quite small). As the POD manifold depends only weakly on the particular values of the parameters of the problem, a suitable library can be con- structed adapting the snapshots calculated in other runs to drastically reduce the size of the ¯rst INC interval and thus the involved computational cost. The strategy is success- fully tested in (i) the one-dimensional complex Ginzburg-Landau equation, including the case in which it exhibits transient chaos, and (ii) the two-dimensional unsteady lid-driven cavity problem
Resumo:
Se desarrollan varias técnicas basadas en descomposición ortogonal propia (DOP) local y proyección de tipo Galerkin para acelerar la integración numérica de problemas de evolución, de tipo parabólico, no lineales. Las ideas y métodos que se presentan conllevan un nuevo enfoque para la modelización de tipo DOP, que combina intervalos temporales cortos en que se usa un esquema numérico estándard con otros intervalos temporales en que se utilizan los sistemas de tipo Galerkin que resultan de proyectar las ecuaciones de evolución sobre la variedad lineal generada por los modos DOP, obtenidos a partir de instantáneas calculadas en los intervalos donde actúa el código numérico. La variedad DOP se construye completamente en el primer intervalo, pero solamente se actualiza en los demás intervalos según las dinámicas de la solución, aumentando de este modo la eficiencia del modelo de orden reducido resultante. Además, se aprovechan algunas propiedades asociadas a la dependencia débil de los modos DOP tanto en la variable temporal como en los posibles parámetros de que pueda depender el problema. De esta forma, se aumentan la flexibilidad y la eficiencia computacional del proceso. La aplicación de los métodos resultantes es muy prometedora, tanto en la simulación de transitorios en flujos laminares como en la construcción de diagramas de bifurcación en sistemas dependientes de parámetros. Las ideas y los algoritmos desarrollados en la tesis se ilustran en dos problemas test, la ecuación unidimensional compleja de Ginzburg-Landau y el problema bidimensional no estacionario de la cavidad. Abstract Various ideas and methods involving local proper orthogonal decomposition (POD) and Galerkin projection are presented aiming at accelerating the numerical integration of nonlinear time dependent parabolic problems. The proposed methods come from a new approach to the POD-based model reduction procedures, which combines short runs with a given numerical solver and a reduced order model constructed by expanding the solution of the problem into appropriate POD modes, which span a POD manifold, and Galerkin projecting some evolution equations onto that linear manifold. The POD manifold is completely constructed from the outset, but only updated as time proceeds according to the dynamics, which yields an adaptive and flexible procedure. In addition, some properties concerning the weak dependence of the POD modes on time and possible parameters in the problem are exploited in order to increase the flexibility and efficiency of the low dimensional model computation. Application of the developed techniques to the approximation of transients in laminar fluid flows and the simulation of attractors in bifurcation problems shows very promising results. The test problems considered to illustrate the various ideas and check the performance of the algorithms are the onedimensional complex Ginzburg-Landau equation and the two-dimensional unsteady liddriven cavity problem.
Resumo:
We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.
Resumo:
In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.
Resumo:
In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.
Resumo:
A new type of dissipative solitons - dissipative Raman solitons - are revealed on the basis of numerical study of the generalized complex nonlinear Ginzburg-Landau equation. The stimulated Raman scattering significantly affects the energy scalability of the dissipative solitons, causing splitting to multiple pulses. We show, that an appropriate increase of the group-delay dispersion can suppress the multipulsing instability due to formation of the dissipative Raman soliton, which is chirped, has a Stokes-shifted spectrum, and chaotic modulation on its trailing edge. The strong perturbation of a soliton envelope caused by the stimulated Raman scattering confines the energy scalability, preventing the so-called dissipative soliton resonance. We show that in practical implementations, a spectral filter can extend the stability regions of high-energy pulses.
Resumo:
We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.
Resumo:
We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.
Resumo:
Standing waves are studied as solutions of a complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms. The onset is described as an instability of the uniform oscillations with respect to spatially periodic perturbations. The solution of the standing wave pattern is given analytically and studied through simulations. © 2013 American Physical Society.