83 resultados para Ginga-NCL
Resumo:
A tanulmány a kockázatnak és a kockázatok felmérésének az éves beszámolók (pénzügyi kimutatások) könyvvizsgálatban betöltött szerepével foglalkozik. A modern könyvvizsgálat – belső és külső korlátainál fogva – nem létezhet a vizsgált vállalkozás üzleti kockázatainak felmérése nélkül. Olyannyira igaz ez, hogy a szakma alapvető szabályait lefektető nemzeti és nemzetközi standardok is kötelező jelleggel előírják az ügyfelek üzleti kockázatainak megismerését. Mindez nem öncélú tevékenység, hanem éppen ez jelenti a könyvvizsgálat kiinduló magját: a kockázatbecslés – a tervezés részeként – az audit végrehajtásának alapja, és egyben vezérfonala. A szerző először bemutatja a könyvvizsgálat és a kockázat kapcsolatának alapvonásait, azt, hogy miként jelenik meg egyáltalán a kockázat problémája a könyvvizsgálatban. Ezt követően a különféle kockázatalapú megközelítéseket tárgyalja, majd néhány főbb elem kiragadásával ábrázolja a kockázatkoncepció beágyazódását a szakmai szabályozásba. Végül – mintegy az elmélet tesztjeként – bemutatja a kockázatmodell gyakorlati alkalmazásának néhány aspektusát. ______ The study examines the role of risk and the assessment of risks in the external audit of financial statements. A modern audit – due to its internal and external limitations – cannot exist without the assessment of the business risk of the entity being audited. This is not a l’art pour l’art activity but rather the very core of the audit. It is – as part of the planning of the audit – a guideline to the whole auditing process. This study has three main sections. The first one explains the connection between audit and risk, the second discusses the different risk based approaches to auditing and the embeddedness of the risk concept into professional regulation. Finally – as a test of theory – some practical aspects of the risk model are discussed through the lens of former empirical research carried out mostly in the US. The conclusion of the study is that though risk based models of auditing have many weaknesses they still result in the most effective and efficient high quality audits.
Resumo:
Hydrophobicity as measured by Log P is an important molecular property related to toxicity and carcinogenicity. With increasing public health concerns for the effects of Disinfection By-Products (DBPs), there are considerable benefits in developing Quantitative Structure and Activity Relationship (QSAR) models capable of accurately predicting Log P. In this research, Log P values of 173 DBP compounds in 6 functional classes were used to develop QSAR models, by applying 3 molecular descriptors, namely, Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Number of Chlorine (NCl) and Number of Carbon (NC) by Multiple Linear Regression (MLR) analysis. The QSAR models developed were validated based on the Organization for Economic Co-operation and Development (OECD) principles. The model Applicability Domain (AD) and mechanistic interpretation were explored. Considering the very complex nature of DBPs, the established QSAR models performed very well with respect to goodness-of-fit, robustness and predictability. The predicted values of Log P of DBPs by the QSAR models were found to be significant with a correlation coefficient R2 from 81% to 98%. The Leverage Approach by Williams Plot was applied to detect and remove outliers, consequently increasing R 2 by approximately 2% to 13% for different DBP classes. The developed QSAR models were statistically validated for their predictive power by the Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross validation methods. Finally, Monte Carlo simulation was used to assess the variations and inherent uncertainties in the QSAR models of Log P and determine the most influential parameters in connection with Log P prediction. The developed QSAR models in this dissertation will have a broad applicability domain because the research data set covered six out of eight common DBP classes, including halogenated alkane, halogenated alkene, halogenated aromatic, halogenated aldehyde, halogenated ketone, and halogenated carboxylic acid, which have been brought to the attention of regulatory agencies in recent years. Furthermore, the QSAR models are suitable to be used for prediction of similar DBP compounds within the same applicability domain. The selection and integration of various methodologies developed in this research may also benefit future research in similar fields.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
Lung transplantation is a necessary step for the patients with the end-stage of chronic obstructive pulmonary disease. The use of artificial lungs is a promising alternative to natural lung transplantation which is complicated and is restricted by low organ donations. For successful lung engineering, it is important to choose the correct combination of specific biological cells and a synthetic carrier polymer. The focus of this study was to investigate the interactions of human lung epithelial cell line NCl-H292 that is involved in lung tissue development with the biodegradable poly(ϵ-caprolactone) before and after its chemical modification to evaluate potential for use in artificial lung formation. Also, the effect of polymer chemical modification on its mechanical and surface properties has been investigated. The poly(ϵ-caprolactone) surface was modified using aminolysis followed by immobilization of gelatine. The unmodified and modified polymer surfaces were characterized for roughness, tensile strength, and NCl-H292 metabolic cell activity. The results showed for the first time the possibility for NCI-H292 cells to adhere on this polymeric material. The Resazurin assay showed that the metabolic activity at 24 hours post seeding of 80% in the presence of the unmodified and greater than 100% in the presence of the modified polymer was observed. The roughness of the poly(ϵ-caprolactone) increased from 4 nm to 26 nm and the film strength increased from 0.01 kN to 0.045 kN when the material was chemically modified. The results obtained to date show potential for using modified poly(ϵ-caprolactone) as a scaffold for lung tissue engineering.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
How might we begin to explore the concept of the “sustainable city” in a world often characterized as dynamic, fluid, and contested? Debates about the sustainable city are too often dominated by a technological discourse conducted among professional experts, but this technocratic framing is open to challenge. For some critics, sustainability is a meaningless notion, yet for others its semantic pliability opens up discursive spaces through which to explore interconnections across time, space, and scale. Thus, while enacting sustainability in policy and practice is an arduous task, we can productively ask how cultural imaginations might be stirred and shaken to make sustainability accessible to a wider public who might join the conversation. What role, we ask, can and should the arts play in wider debates about sustainability in the city today? We explore a coproduced artwork in the northeast of England in order to explain how practice-led research methods were put into dialogue with the social sciences to activate new perspectives on the politics, aesthetics, and practices of sustainability. The case is presented to argue that creative material experimentations can be used as an active research inquiry through which ideas can be tested without knowing predefined means or ends. The case shows how such creativity acts as a catalyst to engage a heterogeneous mix of actors in the redefinition of urban spaces, juxtaposing past and present, with the ephemeral and the (seemingly) durable.
Resumo:
Este artículo presenta la experiencia inédita de ofrecer contenidos audiovisuales para televisión pública digital interactiva brasileña, posibilitando el “diálogo” entre audiencias y empresas por medio del control remoto y del sistema broadcasting. La experiencia de televisión digital interactiva es realizada por la Empresa Brasil de Comunicación (ebc) que, a través de la multiprogramación, creó un canal de servicios para atender a la población de bajos ingresos, asistida por el Programa Bolsa Familia. En 2013, la primera experiencia del proyecto Brasil 4D fue realizada con cien familias en João Pessoa, capital de la provincia de Paraíba, durante tres meses y, desde 2014, el proyecto está siendo desarrollado en Brasilia, Distrito Federal, con trescientas familias. El proyecto, que ofrece gratuitamente nuevos contenidos audiovisuales interactivos, mezcla innovación tecnológica, utilización de multiplataformas y multiprogramación, es desarrollado en software libre.
Resumo:
Esta revisión sistemática de la literatura tuvo como objetivo investigar sobre la depresión en personas con epilepsia en la última década (2005-2015), enfocándose en identificar en el paciente con epilepsia: características sociodemográficas, prevalencia de la depresión, tipos de intervención para el manejo de la depresión, factores asociados con la aparición y el mantenimiento de la depresión y por último, identificar las tendencias en investigación en el estudio de la depresión en pacientes con epilepsia. Se revisaron 103 artículos publicados entre 2005 y 2015 en bases de datos especializadas. Los resultados revelaron que la prevalencia de depresión en pacientes con epilepsia es diversa y oscila en un rango amplio entre 3 y 70 %, por otro lado, que las principales características sociodemográficas asociadas a la depresión está el ser mujer, tener un estado civil soltero y tener una edad comprendida entre los 25 y los 45 años. A esto se añade, que los tratamientos conformados por terapia psicológica y fármacos, son la mejor opción para garantizar la eficacia en los resultados del manejo de la depresión en los pacientes con epilepsia. Con respecto a los factores asociados a la aparición de la depresión en pacientes con epilepsia, se identificaron causas tanto neurobiológicas como psicosociales, asimismo los factores principales asociados al mantenimiento fueron una percepción de baja calidad de vida y una baja auto-eficacia. Y finalmente los tipos de investigación más comunes son de tipo aplicado, de carácter descriptivo, transversales y de medición cuantitativa.