949 resultados para Geometric morphometry
Resumo:
We quantize the space of 2-charge fuzzballs in IIB supergravity on K3. The resulting entropy precisely matches the D1-D5 black hole entropy, including a specific numerical coefficient. A partial match (ie., a smaller coefficient) was found by Rychkov a decade ago using the Lunin-Mathur subclass of solutions - we use a simple observation to generalize his approach to the full moduli space of K3 fuzzballs, filling a small gap in the literature.
Resumo:
Let be a set of points in the plane. A geometric graph on is said to be locally Gabriel if for every edge in , the Euclidean disk with the segment joining and as diameter does not contain any points of that are neighbors of or in . A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any , there exists LGG with edges. This improves upon the previous best bound of . (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any point set, there exists an independent set of size .
Resumo:
The optimal power-delay tradeoff is studied for a time-slotted independently and identically distributed fading point-to-point link, with perfect channel state information at both transmitter and receiver, and with random packet arrivals to the transmitter queue. It is assumed that the transmitter can control the number of packets served by controlling the transmit power in the slot. The optimal tradeoff between average power and average delay is analyzed for stationary and monotone transmitter policies. For such policies, an asymptotic lower bound on the minimum average delay of the packets is obtained, when average transmitter power approaches the minimum average power required for transmitter queue stability. The asymptotic lower bound on the minimum average delay is obtained from geometric upper bounds on the stationary distribution of the queue length. This approach, which uses geometric upper bounds, also leads to an intuitive explanation of the asymptotic behavior of average delay. The asymptotic lower bounds, along with previously known asymptotic upper bounds, are used to identify three new cases where the order of the asymptotic behavior differs from that obtained from a previously considered approximate model, in which the transmit power is a strictly convex function of real valued service batch size for every fade state.
Resumo:
The Exact Cover problem takes a universe U of n elements, a family F of m subsets of U and a positive integer k, and decides whether there exists a subfamily(set cover) F' of size at most k such that each element is covered by exactly one set. The Unique Cover problem also takes the same input and decides whether there is a subfamily F' subset of F such that at least k of the elements F' covers are covered uniquely(by exactly one set). Both these problems are known to be NP-complete. In the parameterized setting, when parameterized by k, Exact Cover is W1]-hard. While Unique Cover is FPT under the same parameter, it is known to not admit a polynomial kernel under standard complexity-theoretic assumptions. In this paper, we investigate these two problems under the assumption that every set satisfies a given geometric property Pi. Specifically, we consider the universe to be a set of n points in a real space R-d, d being a positive integer. When d = 2 we consider the problem when. requires all sets to be unit squares or lines. When d > 2, we consider the problem where. requires all sets to be hyperplanes in R-d. These special versions of the problems are also known to be NP-complete. When parameterizing by k, the Unique Cover problem has a polynomial size kernel for all the above geometric versions. The Exact Cover problem turns out to be W1]-hard for squares, but FPT for lines and hyperplanes. Further, we also consider the Unique Set Cover problem, which takes the same input and decides whether there is a set cover which covers at least k elements uniquely. To the best of our knowledge, this is a new problem, and we show that it is NP-complete (even for the case of lines). In fact, the problem turns out to be W1]-hard in the abstract setting, when parameterized by k. However, when we restrict ourselves to the lines and hyperplanes versions, we obtain FPT algorithms.
Resumo:
We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.
Resumo:
DNA microarrays provide such a huge amount of data that unsupervised methods are required to reduce the dimension of the data set and to extract meaningful biological information. This work shows that Independent Component Analysis (ICA) is a promising approach for the analysis of genome-wide transcriptomic data. The paper first presents an overview of the most popular algorithms to perform ICA. These algorithms are then applied on a microarray breast-cancer data set. Some issues about the application of ICA and the evaluation of biological relevance of the results are discussed. This study indicates that ICA significantly outperforms Principal Component Analysis (PCA).
Resumo:
We discuss the transversal heteroclinic cycle formed by hyperbolic periodic pointes of diffeomorphism on the differential manifold. We point out that every possible kind of transversal heteroclinic cycle has the Smalehorse property and the unstable manifolds of hyperbolic periodic points have the closure relation mutually. Therefore the strange attractor may be the closure of unstable manifolds of a countable number of hyperbolic periodic points. The Henon mapping is used as an example to show that the conclusion is reasonable.