949 resultados para Geological-geothecnical map


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corel Geological Drafting Kit (CGDK), a program written in VBA, has been designed to assist geologists and geochemists with their drafting work. It obtains geological data from a running Excel application directly, and uses the data to plot geochemical diagrams and to construct stratigraphic columns. The software also contains functions for creating stereographic projections and rose diagrams, which can be used for spatial analysis, on a calibrated geological map. The user-friendly program has been tested to work with CorelDRAW 13 - 14 - 15 and Excel 2003 - 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New morpho-bathymetric and tectono-stratigraphic data on Naples and Salerno Gulfs, derived from bathymetric and seismic data analysis and integrated geologic interpretation are here presented. The CUBE(Combined Uncertainty Bathymetric Estimator) method has been applied to complex morphologies, such as the Capri continental slope and the related geological structures occurring in the Salerno Gulf.The bathymetric data analysis has been carried out for marine geological maps of the whole Campania continental margin at scales ranging from 1:25.000 to 1:10.000, including focused examples in Naples and Salerno Gulfs, Naples harbour, Capri and Ischia Islands and Salerno Valley. Seismic data analysis has allowed for the correlation of main morpho-structural lineaments recognized at a regional scale through multichannel profiles with morphological features cropping out at the sea bottom, evident from bathymetry.Main fault systems in the area have been represented on a tectonic sketch map, including the master fault located northwards to the Salerno Valley half graben. Some normal faults parallel to the master fault have been interpreted from the slope map derived from bathymetric data. A complex system of antithetic faults bound two morpho-structural highs located 20km to the south of the Capri Island. Some hints of compressional reactivation of normal faults in an extensional setting involving the whole Campania continental margin have been shown from seismic interpretation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geological evolution of coastal and marine environments offshore the Cilento Promontory through marine geological mapping is discussed here. The marine geological map n. 502 “Agropoli,” located offshore the Cilento Promontory (southern Italy), is described and put in regional geologic setting. The study area covers water depths ranging between 30 and 200 m isobaths. The geologic map has been constructed in the frame of a research program financed by the National Geological Survey of Italy (CARG Project), finalized to the construction of an up-to-date cartography of the Campania region. Geological and geophysical data on the continental shelf and slope offshore the southern Campania region have been acquired in an area bounded northward by the Gulf of Salerno and southward by the Gulf of Policastro. A high-resolution multibeam bathymetry has permitted the construction of a digital elevation model (DEM). Sidescan sonar profiles have also been collected and interpreted, and their merging with bathymetric data has allowed for the realization of the base for the marine geologic cartography. The calibration of geophysical data has been attempted through sea-bottom samples. The morpho-structures and the seismic sequences overlying the outcrops of acoustic basement reported in the cartographic representation have been studied in detail using single-channel seismics. The interpretation of seismic profiles has been a support for the reconstruction of the stratigraphic and structural setting of the Quaternary continental shelf successions and the outcrops of rocky acoustic basement in correspondence to the Licosa Cape morphostructural high. These areas result from the seaward prolongation of the stratigraphic and structural units, widely cropping out in the surrounding emerged sector of the Cilento Promontory. The cartographic approach is based on the recognition of laterally coeval depositional systems, interpreted in the frame of system tracts of the Late Quaternary depositional sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scale 1:500,000; 1 in. equals approx. 8 miles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shows stages and operations undertaken in revising the New Jersey state base map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scale ca. 1:538,560; 1 in. represents approx. 8.5 miles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scale ca. 1:538,560; 1 in. represents approx. 8.5 miles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relief shown by contours and hachures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relief shown by hachures. Depths shown by soundings on Drummond's Lake only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relief shown by hachures. Depths shown by soundings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.