837 resultados para Geologia estrutural
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The lack of environment planning studies in Brazil drives to an imbalance due to a disorderly occupation in some areas. As the youngest Brazilian state facing a fast occupation, Tocantins is included on this situation. In order to provide guidelines for an environment planning studies, this paper is under geoenvironmental zoning which is based on the integration of physical aspects. This detailed study supported by maps elaborated on GIS environment, will be able to present the support for planning studies focused on the potential or limitation of the area
Resumo:
This work presents structural studies in the northwestern portion of the Pitanga Structural High, between the towns of Ipeúna and Charqueada. The area is composed by the sedimentary rocks from Paraná Basin, represented basically by Paleozoic rocks (Itararé Group, Tatuí, Irati and Corumbataí formations) and Mesozoics rocks (Pirambóia and Botucatu formations), in association with lower Cretaceous intrusive basic rocks expressed by dikes and sills. The most important structural features are distensive faults, which put together unleveled tectonic blocks and are frequently filled by diabase dikes. In this context, the main objective of this work is the study of local structures and the recognition of the tectonic association between dropped and uplifted blocks, jointly with the caracterization of a production, migration and storage model for hydrocarbons. Through the interpretation of aerial photos, field recognitions, structural and laboratorial analysis, a normal fault with direction of N30W and a slip of 20-25 meters located south of Ipeúna was recognized this fault puts the Tatuí and Irati Formations side by side. At this place and by the SP-191 route (north of Ipeúna city), sandstones from the top of Tatuí Formation are impregnated by asfaltic material. The data interpretation shows that local fault systems with NW directions have played a determinant part in the fault blocks arrangement, placing sandstone lenses from Tatuí Formation topographically above the oil shales from Irati Formation. In addition, these systems acted as migration paths to transport and storage hydrocarbon in sanstone lenses from Tatuí Formation
Resumo:
The study area is located in the geological parameters of the Pilar de Goiás Greenstone Belt (GO), it is part of the Pilar de Goias Group’s meta-volcano-sedimentary sequence. This is a homoclinal package constituted by terrigenous metassediments containing intercalations of meta-ultramafic rocks and iron formations. The units that were informally named in this work, are interpreted as belongs to the Serra do Moinho Formation. Through mineralogical associations the area’s metamorphism were classified as high greenschist facies garnet zone. Prior to this work were detected in the area, through soil samples, some auriferous anomalies. One of the objectives of this work is the detection of possibles hidrotermal alterations related to these anomalies presents in the study area
Resumo:
The area of this work is located along the Northern portion of the Pelotas´s basin. The onshore region extends from the Southern portion São Paulo State to the North of Rio Grande do Sul State, with a total area of 440 530 km ². The objective of the research is to characterize the main geological structures of the outcropping basement in the Paraná Basin and its correlation with the offshore portion of the Pelotas Basin. The characterization was performed through the integration of surface (SRTM images and outcrops) and subsurface data (seismic data and well logs), the method includes the use of remote sensing techniques and seismic interpretation. The main structures to be analyzed are the Tibagi Lineament and the “Torres Syncline in order to verify its influence on the geological evolution and deformation of the basin. As result, it was identified the continuity of the both structures inside the offshore basin (Pelotas Basin); but only the Tibagi Lineament represents an important structural feature in the offshore basin. In this sense, the Tibagi lineament shows a NW-SE direction along the both basins (Pelotas and Paraná) and it is defined by drainages and relief on the continental portion. It was classified as a graben structure limited by normal faults and it also was verified a trend of faults inside the lineament that cuts all the sedimentary package of Itararé Group from Paraná Basin. The Torres syncline is a structure that connects the arches of Ponta Grossa and Rio Grande, showing NW-SE orientation and a low angle dip in the NW direction. Its projection into the Pelotas Basin was not recognized by the methods applied in this work, because a preliminary analyze indicates that its projection corresponds to a structural high inside the Pelotas Basin
Resumo:
Main occurrence of Cu-Au in Goias Magmatic Arc, the Chapada mine fits into the geological context of the Brasilia Fold Belt, specifically in the Mara Rosa Magmatic Arc. Four targets, named Hidrotermalito Norte and Sul, NW Chapada Mine Portion and Suruca, are situated in this context, which includes ortogneisses and rocks from the Mara Rosa volcanic-sedimentary sequence. All these targets have been studied due to the possibility of presenting a great potential in Cu-Au, as well as the Chapada mine. Hidrotermalitos Norte and Sul targets presents four lithological sequences, which were identified as: quartz-muscovite schist; muscovite quartzites and kyanite quartzites; quartz-biotite-amphibole schist with pyrite and epidote-amphibole-biotite gneisses with muscovite; muscovite-biotite gneisses. They are metamorphosed to amphibolites facies and retrogressive greenschist facies. Sulfetation represented mainly by pyrite. In the NW Chapada Mine Portion, three main lithological groups were identified and classified as biotite gneisses; honblende-quartz-biotite-schist; amphibolites, with the first group metamorphosed in greenschist facies (low grade), and the other two groups metamorphosed in amphibolites facies, with subsequent retrogressive metamorphism in greenschist facies. Sulfetation is represented by chalcopyrite and pyrite. Finally, also three main lithological groups were identified in the Suruca target, classified as garnet-chlorite-epidote-eiotite gneiss; biotite gneiss and chlorite-biotite gneiss with epidote and muscovite; muscovite-quartz schist, all them metamorphised in amphibolites, with retrometamorphism in greenschist facies. Sulfetation represented by pyrite and sphalerite
Resumo:
The Ambrósio dome is a granodioritic batholiths of elliptical geometry, 40km length in the N-S direction and variable width of up to 8 km, has a weakly deformed nucleus with intensely deformed margins, in its northern portion is intruded in orthogneiss that belong to the Archean basement, and its southern part comes in direct contact with the volcano-sedimentary sequence of Paleoproterozoic Rio Itapicuru Greenstone Belt (RIGB), Bahia. From geological mapping on 1:25:000 scale were recognized two structural domains, termed West Domain and East Domain. From investigation of these domains was identified a major shear zone, which puts in contact two distinct stratigraphic sequences, one west, consisting primarily of metavulcanic and metapyroclastic rocks with records of low-grade regional metamorphism, and east discontinuity a metassedimentary domain, with record of gradational contact metamorphism, deformation and compression generated from the rise of Ambrosio Pluton. Such records put into question the structural and stratigraphic models in the literature so far
Resumo:
The Vazante Fault Zone (VFZ), located northwestward of Minas Gerais, host the largest zinc deposit known in the Brazilian territory. This structure is hosted in Vazante’s Group rocks, a metassedimentary sequence of marine environment. Near Vazante is situated the south end of the VFZ. To the west, occur the Serra do Garrote inflexion, characterized by a curvature in the contact of Formations Serra do Garrote and Serra do Poço Verde. This structure is through the analysis of aerial imagery of the region and represented in the published geological maps. The objective of this work is to understand what causes this inflexion and determine whether it affects the VZF, causing a shift in the same, and possibly, in the mineralization as well. To this end, it was done a mapping work in the region covering the Serra do Garrote inflexion and the south end of the VFZ, in 1:25.000 scale, supplemented by petrographic description of thin section and geologic sections, with cooperated to the understanding of the structural evolution of the region. Data analysis allowed the identification of six deformation phases. The D1 an D2 phases generated the main foliation. The D3 phase generate kink bands folds, with NS axis and vertical axial plane. The fourth phase is responsible for generating the Vazante Fault Zone. The fifth phase produces low angle folds and shear zones, subparallel to S1//S2. The last phase generates folds with NW axis and vertical axial plane, with causes the inflection of lithologic contactas. Field observations also make possible the conclusion that the Vazante Fault Zone presents a south continuation, which is affected by deformation associated to D6 phase attributing to the trace of the VFZ a curved geometry, similar to that exhibited by lithologic contacts between units of the map
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The regional geological work for the oil industry, in order to find potential areas for hydrocarbon exploration and understand the geological parameters responsible for the formation of the deposit are known importance. This work fits into that scenario, with regional research with the aid of wells and 2D and 3D seismic sold by DBEP (Database Exploration and Production). Were also used as GeoGraphix software package Landmarks modules Prizm and SeisWork 2D and 3D, and the Surfer 8 and ArcGIS 9.2 with the infrastructure provided by the 05 PRH - ANP with LSGI (Laboratory of Seismic and Geological Interpretation) located at UNESP -- Campus de Rio Claro. The work focuses on study the trend of oil-Badejo-Linguado-Pampo, producing fields since the beginning of offshore holdings. The Campos Basin is now known as the offshore basin of the country more productive, and the high structural Badejo is a structure of great importance in the basin presents itself as largely responsible for the conditioning of hydrocarbon fields Pampo, Linguado and Badejo. Therefore this work also aims to increase knowledge of the region in terms of tectonic and stratigraphic characterize the geometry of the structures associated with this major regional structure. For this we used structural contour maps of the main chrono-horizons, and Isopach maps for the purpose of better understanding the tectono-sedimentary evolution of the Campos Basin locally.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Golfinho Field is located in the offshore region of the Espírito Santo Basin. Its importance is linked to the current average production about 19,000 barrels of oil per day, in turbidite reservoirs , giving it the nineteenth placement among the largest oil fields producing of Brazil. By interpretation and correlation’s methods based on 2D seismic sections and geophysical well logs, the study of tectonic-sedimentary evolution of major Golfinho Field’s reservoirs, which are located in Maastrichtian , aims understand and characterize the geological model of the area for the purpose of identify the main structures and types of reservoirs, improving the geological understanding of the area and using this knowledge at similar sets, that may present exploratory success in similar cases. By structural contour maps and geological cross-sections generated since time-depth conversion , the results defined for the geological model of the area , two distinct tectonic styles: a distensinal tectonics style , characterized by grabens and horsts , which belongs to rift phase, and a salt tectonics style, characterized by salt domes , listric faults and folds rolllover folds type, which belongs to marine phase . The interpretation of seismic sections and subsequent analysis of the main deformations present in the Maastrichtian reservoirs rocks ( turbidites ) showed that the northern region of the field is the most affected by salt tectonics . As for reservoirs, it was concluded to be associated to tectonics formed by rollover folds type, being older than listric faults
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)