953 resultados para Generalized Hough transforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solitary-wavelike solution of the generalized Korteweg-de Vries equation with mixed nonlinearity is obtained. Two asymptotic cases of the solution have been discussed and solitary wave solutions have been derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-linear model, construed as a generalized version of the models put forth earlier for the study of bi-state social interaction processes, is proposed in this study. The feasibility of deriving the dynamics of such processes is demonstrated by establishing equivalence between the non-linear model and a higher order linear model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general analysis of symmetries and constraints for singular Lagrangian systems is given. It is shown that symmetry transformations can be expressed as canonical transformations in phase space, even for such systems. The relation of symmetries to generators, constraints, commutators, and Dirac brackets is clarified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transforms dealt with in this paper are defined in terms of the transform kernels which are Kroneeker products of the two or more component kernels. The signal flow-graph for the computation of such a transform is obtained with the flow-graphs for the component transforms as building blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exact aerodynamic noise equation is formulated for Newtonian fluids. The cause−effect problem is discussed. Finally, the importance of external additions of mass, momentum, and energy is examined. Physics of Fluids is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rank-augmnented LU-algorithm is suggested for computing a generalized inverse of a matrix. Initially suitable diagonal corrections are introduced in (the symmetrized form of) the given matrix to facilitate decomposition; a backward-correction scheme then yields a desired generalized inverse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic systems involving convolution integrals with decaying kernels, of which fractionally damped systems form a special case, are non-local in time and hence infinite dimensional. Straightforward numerical solution of such systems up to time t needs O(t(2)) computations owing to the repeated evaluation of integrals over intervals that grow like t. Finite-dimensional and local approximations are thus desirable. We present here an approximation method which first rewrites the evolution equation as a coupled in finite-dimensional system with no convolution, and then uses Galerkin approximation with finite elements to obtain linear, finite-dimensional, constant coefficient approximations for the convolution. This paper is a broad generalization, based on a new insight, of our prior work with fractional order derivatives (Singh & Chatterjee 2006 Nonlinear Dyn. 45, 183-206). In particular, the decaying kernels we can address are now generalized to the Laplace transforms of known functions; of these, the power law kernel of fractional order differentiation is a special case. The approximation can be refined easily. The local nature of the approximation allows numerical solution up to time t with O(t) computations. Examples with several different kernels show excellent performance. A key feature of our approach is that the dynamic system in which the convolution integral appears is itself approximated using another system, as distinct from numerically approximating just the solution for the given initial values; this allows non-standard uses of the approximation, e. g. in stability analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive expressions for convolution multiplication properties of discrete cosine transform II (DCT II) starting from equivalent discrete Fourier transform (DFT) representations. Using these expressions, a method for implementing linear filtering through block convolution in the DCT II domain is presented. For the case of nonsymmetric impulse response, additional discrete sine transform II (DST II) is required for implementing the filter in DCT II domain, where as for a symmetric impulse response, the additional transform is not required. Comparison with recently proposed circular convolution technique in DCT II domain shows that the proposed new method is computationally more efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of the generalized survival probability, that is, the probability of not crossing an arbitrary location R during relaxation, have been investigated experimentally (via scanning tunneling microscope observations) and numerically. The results confirm that the generalized survival probability decays exponentially with a time constant tau(s)(R). The distance dependence of the time constant is shown to be tau(s)(R)=tau(s0)exp[-R/w(T)], where w(2)(T) is the material-dependent mean-squared width of the step fluctuations. The result reveals the dependence on the physical parameters of the system inherent in the prior prediction of the time constant scaling with R/L-alpha, with L the system size and alpha the roughness exponent. The survival behavior is also analyzed using a contrasting concept, the generalized inside survival S-in(t,R), which involves fluctuations to an arbitrary location R further from the average. Numerical simulations of the inside survival probability also show an exponential time dependence, and the extracted time constant empirically shows (R/w)(lambda) behavior, with lambda varying over 0.6 to 0.8 as the sampling conditions are changed. The experimental data show similar behavior, and can be well fit with lambda=1.0 for T=300 K, and 0.5