948 resultados para Generalized Gross Laplacian
Resumo:
We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The properties of the generalized survival probability, that is, the probability of not crossing an arbitrary location R during relaxation, have been investigated experimentally (via scanning tunneling microscope observations) and numerically. The results confirm that the generalized survival probability decays exponentially with a time constant tau(s)(R). The distance dependence of the time constant is shown to be tau(s)(R)=tau(s0)exp[-R/w(T)], where w(2)(T) is the material-dependent mean-squared width of the step fluctuations. The result reveals the dependence on the physical parameters of the system inherent in the prior prediction of the time constant scaling with R/L-alpha, with L the system size and alpha the roughness exponent. The survival behavior is also analyzed using a contrasting concept, the generalized inside survival S-in(t,R), which involves fluctuations to an arbitrary location R further from the average. Numerical simulations of the inside survival probability also show an exponential time dependence, and the extracted time constant empirically shows (R/w)(lambda) behavior, with lambda varying over 0.6 to 0.8 as the sampling conditions are changed. The experimental data show similar behavior, and can be well fit with lambda=1.0 for T=300 K, and 0.5
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
Let Ohm be a bounded domain in IRN, N greater than or equal to 2, lambda > 0, q is an element of (0, N - 1) and alpha is an element of (1, N/N-1 In this article we show the existence of at least two positive solutions for the following quasilinear elliptic problem with an exponential type nonlinearity:
Resumo:
Using the linearized BGK model and the method of moments of half-range distribution functions the temperature jumps at two plates are determined, and it is found that the results are in fair agreement with those of Gross and Ziering, and Ziering.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
A theory and generalized synthesis procedure is advocated for the design of weir notches and orifice-notches having a base in any given shape, to a depth a, such that the discharge through it is proportional to any singular monotonically-increasing function of the depth of flow measured above a certain datum. The problem is reduced to finding an exact solution of a Volterra integral equation in Abel form. The maximization of the depth of the datum below the crest of the notch is investigated. Proof is given that for a weir notch made out of one continuous curve, and for a flow proportional to the mth power of the head, it is impossible to bring the datum lower than (2m − 1)a below the crest of the notch. A new concept of an orifice-notch, having discontinuity in the curve and a division of flow into two distinct portions, is presented. The division of flow is shown to have a beneficial effect in reducing the datum below (2m − 1)a from the crest of the weir and still maintaining the proportionality of the flow. Experimental proof with one such orifice-notch is found to have a constant coefficient of discharge of 0.625. The importance of this analysis in the design of grit chambers is emphasized.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
The association parameter in the diffuswn equaiior, dye fo Wiike one Chong has been interpreted in deferminable properties, thus permitting easily the calculation of the same for unknown systems. The proposed eqyotion a!se holds goods for water as soiute in organic solvenfs. The over-all percentage error remains the sarrse as that of the original equation.
Resumo:
Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.
Resumo:
In this paper we propose a general Linear Programming (LP) based formulation and solution methodology for obtaining optimal solution to the load distribution problem in divisible load scheduling. We exploit the power of the versatile LP formulation to propose algorithms that yield exact solutions to several very general load distribution problems for which either no solutions or only heuristic solutions were available. We consider both star (single-level tree) networks and linear daisy chain networks, having processors equipped with front-ends, that form the generic models for several important network topologies. We consider arbitrary processing node availability or release times and general models for communication delays and computation time that account for constant overheads such as start up times in communication and computation. The optimality of the LP based algorithms is proved rigorously.
Resumo:
The continuum model of dipolar solvation dynamics is reviewed. The effects of non-spherical molecular shapes, of non-Debye dielectric relaxation of the polar solvent and of dielectric inhomogeneity of the solvent around the solute dipole are investigated. Several new theoretical results are presented. It is found that our generalized continuum model, which takes into account the dielectric inhomogeneity of the surrounding solvent, provides a description of solvation dynamics consistent with recent experimental results.