966 resultados para Gaussian derivatives
Resumo:
Anisotropic gaussian beams are obtained as exact solutions to the parabolic wave equation. These beams have a quadratic phase front whose principal radii of curvature are non-degenerate everywhere. It is shown that, for the lowest order beams, there exists a plane normal to the beam axis where the intensity distribution is rotationally symmetric about the beam axis. A possible application of these beams as normal modes of laser cavities with astigmatic mirrors is noted.
Resumo:
Estimates of microbial crude protein (MCP) production by ruminants, using a method based on the excretion of purine derivatives in urine, require an estimate of the excretion of endogenous purine derivatives (PD) by the animal. Current methods allocate a single value to all cattle. An experiment was carried out to compare the endogenous PD excretion in Bos taurus and high-content B. indicus (hereafter, B. indicus) cattle. Five Holstein–Friesian (B. taurus) and 5 Brahman (> 75% B. indicus) steers (mean liveweight 326 ± 3.0 kg) were used in a fasting study. Steers were fed a low-quality buffel grass (Cenchrus ciliaris; 59.4 g crude protein/kg dry matter) hay at estimated maintenance requirements for 19 days, after which hay intake was incrementally reduced for 2 days and the steers were fasted for 7 days. The excretion of PD in urine was measured daily for the last 6 days of the fasting period and the mean represented the daily endogenous PD excretion. Excretion of endogenous PD in the urine of B. indicus steers was less than half that of the B. taurus steers (190 µmol/kg W0.75.day v. 414 µmol/kg W0.75.day; combined s.e. 37.2 µmol/kg W0.75.day; P < 0.001). It was concluded that the use of a single value for endogenous PD excretion is inappropriate for use in MCP estimations and that subspecies-specific values would improve precision.
Resumo:
An exact expression for the calculation of gaussian path integrals involving non-local potentials is given. Its utility is demonstrated by using it to evaluate a path integral arising in the study of an electron gas in a random potential.
Resumo:
Pseudo-marginal methods such as the grouped independence Metropolis-Hastings (GIMH) and Markov chain within Metropolis (MCWM) algorithms have been introduced in the literature as an approach to perform Bayesian inference in latent variable models. These methods replace intractable likelihood calculations with unbiased estimates within Markov chain Monte Carlo algorithms. The GIMH method has the posterior of interest as its limiting distribution, but suffers from poor mixing if it is too computationally intensive to obtain high-precision likelihood estimates. The MCWM algorithm has better mixing properties, but less theoretical support. In this paper we propose to use Gaussian processes (GP) to accelerate the GIMH method, whilst using a short pilot run of MCWM to train the GP. Our new method, GP-GIMH, is illustrated on simulated data from a stochastic volatility and a gene network model.
Resumo:
In recent years there has been an upsurge of interest in the study of organic reactions in the solid state. It is now realised that the crystalline matrix provides an extra-ordinary spatial control on the initiation and progress of these reactions. Electronic and dipolar effects which are important in solution are replaced by structural and geometric effects in solids. These 'spatial' or 'topochemical' aspects are important in understanding the mechanistic details of the reaction. In our laboratory, the thermally induced acyl migration in salicylamides from 0- to N- position in the solid state has been under study (Scheme 1). The structures of the acetyl and benzoyl derivatives (Ia,IIa, Ib and IIb) have been reported.
Resumo:
This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.
Resumo:
Gaussian processes (GPs) are promising Bayesian methods for classification and regression problems. Design of a GP classifier and making predictions using it is, however, computationally demanding, especially when the training set size is large. Sparse GP classifiers are known to overcome this limitation. In this letter, we propose and study a validation-based method for sparse GP classifier design. The proposed method uses a negative log predictive (NLP) loss measure, which is easy to compute for GP models. We use this measure for both basis vector selection and hyperparameter adaptation. The experimental results on several real-world benchmark data sets show better orcomparable generalization performance over existing methods.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
To study the structure activity relationship (SAR) on the cytotoxic activity and probe the structural requirement for the potent antitumor activity, a series of novel diazaspiro bicyclo hydantoin derivatives were designed and synthesized. Their structures were confirmed by H-1 NMR, LCMS and IR analyses. The antiproliferative effect of these compounds were determined against human leukemia, K562 (chronic myelogenous leukemia) and CEM (T-cell leukemia) cells using trypan blue and MTT assay, and the SAR associated with the position of N-terminal substituents in diazaspiro bicyclo hydantoin have also been discussed. It has been observed that these compounds displayed strong, moderate and weak cytotoxic activities. Interestingly, compounds having electron withdrawing groups at third and fourth position of the phenyl ring displayed selectively cytotoxic activities to both the cell lines tested with IC50 value lower than 50 mu M. In addition, the cytotoxic activities of the compounds 7(a-o) bearing the substituents at N-3 position of diazaspiro bicyclo hydantoin increases in the order alkene > ester > ether and plays an important role in determining their antitumor activities. The position and number of substituents in benzyl group attached to N-8 of diazaspiro bicyclo hydantoin nucleus interacted selectively with specific targets leading to the difference of biochemical and pharmacological effects.
Resumo:
The application of the CNDO and PPP-CI methods to N,N-dimethyl dithiocarbamate, O-methyl dithiocarbonate (methyl xanthate) and methyl trithiocarbonate ions for the elucidation of electronic structure and electronic spectra is described. The CNDO/2 calculations have been used to obtain the one centre core integrals of the ionic compounds required in calculating the pi electronic spectra of these molecules using the PPP method. The calculated spectra are in good agreement with the experiment. The atomic charge densities determined for alkyl xanthate, dithiocarbamate and trithiocarbonate ions support the earlier qualitative predictions regarding electronic structure from spectroscopic and other studies.
Resumo:
Gaussian-beam-type solutions to the Maxwell equations are constructed by using results from relativistic front analysis, and the propagation characteristics of these beams are analyzed. The rays of geometrical optics are shown to be the trajectories of energy flow, as given by the Poynting vector. The longitudinal components of the field vectors in the direction of the beam axis, though small, are shown to be essential for a consistent description.
Resumo:
The probable modes of binding of Methyl--alpha (and beta)-D-glucopyranosides and some of their derivatives to concanavalin A have been proposed from theoretical studies. Theory predicts that beta-MeGlcP can bind to ConA in three different modes whereas alpha-MeGlcP can bind only in one mode. beta-MeGlcP in its most favourable mode of binding differs from alpha-MeGlcP in its alignment in the active-site of the lectin where it binds in a flipped or inverted orientation. Methyl substitution at the C-2 atom of the alpha-MeGlcP does not significantly affect the possible orientations of the sugar in the active-site of the lectin. Methyl substitution at C-3 or C-4, however, affects the allowed orientations drastically leading to the poor inhibiting power of Methyl-3-O-methyl-alpha-D-glucopyranoside and the inactivity of Methyl-4-O-methyl-alpha-D-glycopyranoside. These studies suggest that the increased activity of the alpha-MeGlcP over beta-MeGlcP may be due to the possibility of formation of better hydrogen bonds and to hydrophobic interactions rather than to steric factors as suggested by earlier workers. These models explain the available NMR and other binding studies.
Resumo:
Anisotropic Gaussian Schell-model (AGSM) fields and their transformation by first-order optical systems (FOS’s) forming Sp(4,R) are studied using the generalized pencils of rays. The fact that Sp(4,R), rather than the larger group SL(4,R), is the relevant group is emphasized. A convenient geometrical picture wherein AGSM fields and FOS’s are represented, respectively, by antisymmetric second-rank tensors and de Sitter transformations in a (3+2)-dimensional space is developed. These fields are shown to separate into two qualitatively different families of orbits and the invariants over each orbit, two in number, are worked out. We also develop another geometrical picture in a (2+1)-dimensional Minkowski space suitable for the description of the action of axially symmetric FOS’s on AGSM fields, and the invariants, now seven in number, are derived. Interesting limiting cases forming coherent and quasihomogeneous fields are analyzed.
Resumo:
New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.