943 resultados para Gaussian Process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, it is necessary to modify the traditional GP-LVM to make it capable of handing the supervised or semi-supervised learning tasks. For this purpose, we propose a new semi-supervised GP-LVM framework under the pairwise constraints. Through transferring the pairwise constraints in the observed space to the latent space, the constrained priori information on the latent variables can be obtained. Under this constrained priori, the latent variables are optimized by the maximum a posteriori (MAP) algorithm. The effectiveness of the proposed algorithm is demonstrated with experiments on a variety of data sets. © 2010 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a sparse modeling approach to solve ordinal regression problems using Gaussian processes (GP). Designing a sparse GP model is important from training time and inference time viewpoints. We first propose a variant of the Gaussian process ordinal regression (GPOR) approach, leave-one-out GPOR (LOO-GPOR). It performs model selection using the leave-one-out cross-validation (LOO-CV) technique. We then provide an approach to design a sparse model for GPOR. The sparse GPOR model reduces computational time and storage requirements. Further, it provides faster inference. We compare the proposed approaches with the state-of-the-art GPOR approach on some benchmark data sets. Experimental results show that the proposed approaches are competitive.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present the Gaussian process density sampler (GPDS), an exchangeable generative model for use in nonparametric Bayesian density estimation. Samples drawn from the GPDS are consistent with exact, independent samples from a distribution defined by a density that is a transformation of a function drawn from a Gaussian process prior. Our formulation allows us to infer an unknown density from data using Markov chain Monte Carlo, which gives samples from the posterior distribution over density functions and from the predictive distribution on data space. We describe two such MCMC methods. Both methods also allow inference of the hyperparameters of the Gaussian process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace’s method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The capacity of peak-power limited, single-antenna, noncoherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary and ergodic fading processes of a given spectral distribution function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. The assumption that the law of the fading process has no mass point at zero is essential in the sense that there exist stationary and ergodic fading processes whose law has a mass point at zero and that give rise to a smaller pre-log than the Gaussian process of equal spectral distribution function. An extension of these results to multiple-input single-output (MISO) fading channels with memory is also presented. © 2006 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The capacity of peak-power limited, single-antenna, non-coherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary & ergodic fading processes of a given spectral distribution function whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. © 2006 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of system identification is more robust than finding point estimates of a parametric function representation. Our principled filtering/smoothing approach for GP dynamic systems is based on analytic moment matching in the context of the forward-backward algorithm. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail. © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gaussian processes are gaining increasing popularity among the control community, in particular for the modelling of discrete time state space systems. However, it has not been clear how to incorporate model information, in the form of known state relationships, when using a Gaussian process as a predictive model. An obvious example of known prior information is position and velocity related states. Incorporation of such information would be beneficial both computationally and for faster dynamics learning. This paper introduces a method of achieving this, yielding faster dynamics learning and a reduction in computational effort from O(Dn2) to O((D - F)n2) in the prediction stage for a system with D states, F known state relationships and n observations. The effectiveness of the method is demonstrated through its inclusion in the PILCO learning algorithm with application to the swing-up and balance of a torque-limited pendulum and the balancing of a robotic unicycle in simulation. © 2012 IEEE.