994 resultados para Gastric acid secretion


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have observed that intracerebroventricular (icv) injection of selective N-methyl-D-aspartic acid (NMDA)-type glutamatergic receptor antagonists inhibits lordosis in ovariectomized (OVX), estrogen-primed rats receiving progesterone or luteinizing hormone-releasing hormone (LHRH). When NMDA was injected into OVX estrogen-primed rats, it induced a significant increase in lordosis. The interaction between LHRH and glutamate was previously explored by us and another groups. The noradrenergic systems have a functional role in the regulation of LHRH release. The purpose of the present study was to explore the interaction between glutamatergic and noradrenergic transmission. The action of prazosin, an alpha1- and alpha2b-noradrenergic antagonist, was studied here by injecting it icv (1.75 and 3.5 µg/6 µL) prior to NMDA administration (1 µg/2 µL) in OVX estrogen-primed Sprague-Dawley rats (240-270 g). Rats manually restrained were injected over a period of 2 min, and tested 1.5 h later. The enhancing effect induced by NMDA on the lordosis/mount ratio at high doses (67.06 ± 3.28, N = 28) when compared to saline controls (6 and 2 µL, 16.59 ± 3.20, N = 27) was abolished by prazosin administration (17.04 ± 5.52, N = 17, and 9.33 ± 3.21, N = 20, P < 0.001 for both doses). Plasma LH levels decreased significantly only with the higher dose of prazosin (1.99 ± 0.24 ng/mL, N = 18, compared to saline-NMDA effect, 5.96 ± 2.01 ng/mL, N = 13, P < 0.05). Behavioral effects seem to be more sensitive to the alpha-blockade than hormonal effects. These findings strongly suggest that the facilitatory effects of NMDA on both lordosis and LH secretion in this model are mediated by alpha-noradrenergic transmission.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Meal fatty acids have been shown to modulate the size and composition of triacylglycerol (TAG)-rich lipoproteins influencing the magnitude and duration of the postprandial plasma TAG response. As a result there is considerable interest in the origin of these meal fatty-acid induced differences in particle composition. Caco-2 cells were incubated over 4 days with fatty acid mixtures resembling the composition of saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA)-rich meals fed in a previous postprandial study to determine their impact on lipoprotein synthesis and secretion. The MUFA- and PUFA-rich mixtures supported greater intracellular TAG, but not cholesterol accumulation compared with the SFA-rich mixture (P < 0.001). The MUFA-rich mixture promoted significantly greater TAG and cholesterol secretion than the other mixtures and significantly more apolipoprotein B-100 secretion than the PUFA-rich mixture (P < 0.05). Electron microscopy revealed the SFA-rich mixture had led to unfavourable effects on cellular morphology, compared with the unsaturated fatty acid-rich mixtures. Our findings suggest the MUFA-rich mixture, may support the formation of a greater number of TAG-rich lipoproteins, which is consistent with indirect observations from our human study. Our electron micrographs are suggestive that some endocytotic uptake of MUFA-rich taurocholate micelles may promote greater lipoprotein synthesis and secretion in Caco-2 cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: The present study was carried out to investigate effects of meals, rich in either saturated fatty acids (SFA), or n-6 or n-3 fatty acids, on postprandial plasma lipid and hormone concentrations as well as post-heparin plasma lipoprotein lipase (LPL) activity. DESIGN: The study was a randomized single-blind study comparing responses to three test meals. SETTING: The volunteers attended the Clinical Investigation Unit of the Royal Surrey County Hospital on three separate occasions in order to consume the meals. SUBJECTS: Twelve male volunteers with an average age of 22.5 +/- 1.4 years (mean +/- SD), were selected from the University of Surrey student population; one subject dropped out of the study because he found the test meal unpalatable. INTERVENTIONS: Three meals were given in the early evening and postprandial responses were followed overnight for 11h. The oils used to prepare each of the three test meals were: a mixed oil rich in saturated fatty acids (SFA) which mimicked the fatty acid composition of the current UK diet, corn oil, rich in n-6 fatty acids and a fish oil concentrate (MaxEPA) rich in n-3 fatty acids. The oil under investigation (40 g) was incorporated into the test meals which were otherwise identical [208 g carbohydrates, 35 g protein, 5.65 MJ (1350 kcal) energy]. Postprandial plasma triacylglycerol (TAG), gastric inhibitory polypeptide (GIP), and insulin responses, as well as post-heparin LPL activity (measured at 12 h postprandially only) were investigated. RESULTS: Fatty acids of the n-3 series significantly reduced plasma TAG responses compared to the mixed oil meal (P < 0.05) and increased post-heparin LPL activity 15 min after the injection of heparin (P < 0.01). A biphasic response was observed in TAG, with peak responses occurring at 1 h and between 3-7 h postprandially. GIP and insulin showed similar responses to the three test meals and no significant differences were observed. CONCLUSION: We conclude that fish oils can decrease postprandial plasma TAG levels partly through an increase in post-heparin LPL activity, which however, is not due to increased GIP or insulin concentrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P>Type III secretion (T3S) plays a pivotal role in the colonization of ruminant hosts by Enterohemorrhagic Escherichia coli (EHEC). The T3S system translocates effector proteins into host cells to promote bacterial attachment and persistence. The repertoire and variation in prophage regions underpins differences in the pathogenesis and epidemiology of EHEC strains. In this study, we have used a collection of deletions in cryptic prophages and EHEC O157 O-islands to screen for novel regulators of T3S. Using this approach we have identified a family of homologous AraC-like regulators that indirectly repress T3S. These prophage-encoded secretion regulator genes (psr) are found exclusively on prophages and are associated with effector loci and the T3S activating Pch family of regulators. Transcriptional profiling, mutagenesis and DNA binding studies were used to show that these regulators usurp the conserved GAD acid stress resistance system to regulate T3S by increasing the expression of GadE (YhiE) and YhiF and that this regulation follows attachment to bovine epithelial cells. We further demonstrate that PsrA and effectors encoded within cryptic prophage CP933-N are required for persistence in a ruminant model of colonization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on beta-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P) H oxidase. Thus, ROS derived from OA metabolism via NAD(P) H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in beta-cells. (Endocrinology 152: 3614-3621, 2011)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the direct effects of ethanol and its metabolites on the guinea pig lung mast cell, and the alterations caused in the histamine release induced by different stimuli. Guinea pig lungs cells dispersed by collagenase were used throughout. High concentrations of ethanol (100 mg/ml), acetaldehyde (0.3-3 mg/ml) and acetic acid (3 mg/ml) induced histamine release that was not inhibited by sodium cyanide (0.3 mM). Lower concentration of ethanol (10 mg/ml) and acetic acid (0.3 mg/ml), but not acetaldehyde, inhibited the histamine release induced by antigen and ionophore A23187. The histamine release induced by phorbol 12-miristate 13-acetate (1 mu M) was also inhibited by ethanol (10 mg/ml). Changes in the levels of calcium, glucose and phosphatidic acid did not influence the effect of ethanol. We conclude that high doses of ethanol, acetaldehyde, and acetic acid cause a cytotoxic histamine release by independent mechanisms. Low concentrations of acetic acid inhibit the histamine release by pH reduction. Ethanol acts by a generalized effect that is independent of calcium and glucose suggesting a nonspecific effect that, nevertheless, is not cytotoxic since it can be reversed by washing the cells. (C) 2000 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim of the study: Mouriri pusa, popularly known as manapuca or jaboticaba do mato, is a plant from Brazilian cerrado that has been found to be commonly used in the treatment of gastrointestinal disturbs in its native region. The present work was carried out to investigate the effect of tannins (TF) and flavonoids (FF) fractions from Mouriri pusa leaves methanolic extract on the prevention and cicatrisation process of gastric ulcers, and also evaluate possible toxic effects.Materials and methods: The following protocols were taken in rats: acute assay, in which ulcers were induced by oral ethanol after pre-treatment with the fractions; and 14 days treatment assay, in which ulcers were treated for 14 days after induction by local injection of acetic acid.Results: In the acute model, treatment with either, TF (25 mg/kg) or FF (50 mg/kg), was able to reduce lesion area, showing gastroprotective effect. In addition, FF proved itself anti-inflammatory by reducing COX-2 levels. In acetic acid model, both fractions exhibited larger ulcers' regenerative mucosa, indicating cicatrisation enhancement. FF group also showed augmented cell proliferation, anti-inflammatory action and enhanced angiogenesis as well as increased mucus secretion. Moreover, concerning the toxicity parameters analyzed, no alteration in the fractions groups was observed.Conclusions: Tannins and flavonoids from Mouriri pusa provide beneficial effects against gastric ulcers with relative safety. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the alkaline tide. Numerous studies on different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO3-](pl)) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO2 (PaCO2) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO2.Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO3 and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid-base disturbances were similar in magnitude to that mediated by digestion and exercise. Plasma [HCOT] increased from 18.4+/-1.5 to 23.7+/-1.0 mmol L-1 during digestion and was accompanied by a respiratory compensation where PaCO2 increased from 13.0+/-0.7 to 19.1+/-1.4 mm Hg at 24 h. As a result, pHa decreased slightly, but were significantly below fasting levels 36 h into digestion. Infusion of NaHCO3 (7 mmol kg(-1)) resulted in a 10 mmol L-1 increase in plasma [HCO3-] within 1 h and was accompanied by a rapid elevation of pHa (from 7.58+/-0.01 to 7.78+/-0.02). PaCO2, however, did not change following HCO3- infusion, which indicates a lack of respiratory compensation. Following infusion of HCl (4 mmol kg(-1)), plasma pHa decreased by 0.07 units and [HCO3-](pl) was reduced by 4.6 mmol L-1 within the first 3 h. PaCO2, however, was not affected and there was no evidence for respiratory compensation.Our data show that digesting rattlesnakes exhibit respiratory compensations to the alkaline tide, whereas artificially induced metabolic acid-base disturbances of same magnitude remain uncompensated. It seems difficult to envision that the central and peripheral chemoreceptors would experience different stimuli during these conditions. One explanation for the different ventilatory responses could be that digestion induces a more relaxed state with low responsiveness to ventilatory stimuli. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alchornea triplinervia (Spreng.) Muell. Arg (Euphorbiaceae) is a medicinal plant commonly used by people living in the Cerrado region of Brazil to treat gastrointestinal ulcers. We previously described the gastroprotective action of methanolic extract (ME) of Alchornea triplinervia and the ethyl acetate fraction (EAF) in increasing of prostaglandin E 2 (PGE 2) gastric levels in the mucosa. In this work we evaluated the effect of EAF in promoting the healing process in rats with acetic acid-induced gastric ulcers. In addition, toxicity was investigated during treatment with EAF. After 14 days of treatment with EAF, the potent stimulator of gastric cell proliferation contributed to the acceleration of gastric ulcer healing. Upon immunohistochemical analysis, we observed a pronounced expression of COX-2, mainly in the submucosal layer. The 14-day EAF treatment also significantly increased the number of neutrophils in the gastric mucosa regeneration area. The EAF induced angiogenesis on gastric mucosa, observed as an increase of the number of blood vessels supplying the stomach in rats treated with EAF. Oral administration for 14 days of the ethyl acetate fraction from Alchornea triplinervia accelerated the healing of gastric ulcers in rats by promoting epithelial cell proliferation, increasing the number of neutrophils and stimulation of mucus production. This fraction, which contained mainly phenolic compounds, contributed to gastric mucosa healing. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Factor H (FH) is one of the most important regulatory proteins of the alternative pathway of the complement system. Patients with FH deficiency have a higher risk for development of infections and kidney diseases because of the uncontrolled activation and subsequent depletion of the central regulatory component C3 of the complement system. In this study, we investigated the consequences of the Arg(127)His mutation in FH (FHR127H) previously described in an FH-deficient patient, on the secretion of this protein by skin fibroblasts in vitro. We observed that, although the patient cells stimulated with IFN-gamma were able to synthesize FHR127H, the mutant protein was largely retained within the endoplasmic reticulum (ER), whereas normal human fibroblasts stimulated with IFN-gamma secrete FH without retention in the ER. Moreover, the retention of FHR127H provoked enlargement of ER cisterns after treatment with IFN-gamma. A similar ER retention was observed in Cos-7 cells expressing the mutant FHR127H protein. Despite this deficiency in secretion, we show that the FHR127H mutant is capable of functioning as a cofactor in the Factor I-mediated cleavage of C3. We then evaluated whether a treatment could increase the secretion of FH, and observed that the patient's fibroblasts treated with the chemical chaperones 4-phenylbutiric acid or curcumin increased the secretion rate of FH. We propose that these chemical chaperones could be used as alternative therapeutic agents to increase FH plasma levels in FH-deficient patients caused by secretion delay of this regulatory protein. The Journal of Immunology, 2012, 189: 3242-3248.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3- transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High Al resistance in buckwheat (Fagopyrum esculentum Moench. cv Jianxi) has been suggested to be associated with both internal and external detoxification mechanisms. In this study the characteristics of the external detoxification mechanism, Al-induced secretion of oxalic acid, were investigated. Eleven days of P depletion failed to induce secretion of oxalic acid. Exposure to 50 μm LaCl3 also did not induce the secretion of oxalic acid, suggesting that this secretion is a specific response to Al stress. Secretion of oxalic acid was maintained for 8 h by a 3-h pulse treatment with 150 μm Al. A nondestructive method was developed to determine the site of the secretion along the root. Oxalic acid was found to be secreted in the region 0 to 10 mm from the root tip. Experiments using excised roots also showed that secretion was located on the root tip. Four kinds of anion-channel inhibitors showed different effects on Al-induced secretion of oxalic acid: 10 μm anthracene-9-carboxylic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonate had no effect, niflumic acid stimulated the secretion 4-fold, and phenylglyoxal inhibited the secretion by 50%. Root elongation in buckwheat was not inhibited by 25 μm Al or 10 μm phenylglyoxal alone but was inhibited by 40% in the presence of Al and phenylglyoxal, confirming that secretion of oxalic acid is associated with Al resistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Total glycans from the cell layer and the culture medium of human vascular smooth muscle cells (VSMC) that had been cultivated in the presence of platelet-derived growth factor (PDGF) were isolated and purified by gel filtration after Pronase and DNase digestion and alkaliborohydride treatment. Measurements of the content of neutral hexoses and uronic acids revealed that PDGF stimulates total glycan synthesis by proliferating VSMC in a linear fashion from 24 h to 72 h of incubation. In contrast, total glycan synthesis by human fibroblasts, epithelial cells, or endothelial cells was not affected by PDGF, indicating cell-type specificity. Chemical, biochemical, and enzymological characterization of the total glycans synthesized by VSMC showed that PDGF stimulates the secretion of a 340-kDa glycan molecule in a time-dependent manner from 24 h to 72 h. This molecule is highly acidic, shares a common structure with hyaluronic acid, and exhibits a potent antiproliferative activity on VSMC. These results suggest that VSMC in response to PDGF are capable of controlling their own growth and migration by the synthesis of a specific form of hyaluronic acid with antiproliferative potency, which may be involved in the regulation of the local inflammatory responses associated with atherosclerosis.